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Mathematical competencies of 180 children were examined at 4 points between 2nd and 3rd grades (age range
between 7 and 9 years). Children were initially classified into one of 4 groups: math difficulties but normal
reading (MD only), math and reading difficulties (MD–RD), reading difficulties but normal math (RD only), and
normal achievement in math and reading (NA). The groups did not differ significantly in rate of development.
However, at the end of 3rd grade the MD only group performed better than the MD–RD group in problem
solving but not in calculation. The NA and RD only groups performed better than the MD–RD group in most
areas. Deficiencies in fact mastery and calculation fluency, in particular, are defining features of MD, with or
without RD.

In early elementary school, children with mathe-
matics difficulties (MD) who are good readers
progress faster in mathematics achievement than
do children with comorbid MD and reading diffi-
culties (RD), independent of their intelligence,
income level, ethnicity, and gender (Jordan, Kaplan,
& Hanich, 2002). In contrast, children with RD who
are good in mathematics and children with comor-
bid RD and MD progress at about the same rate in
reading achievement. Although reading abilities
influence growth in mathematics achievement,
mathematics abilities do not influence growth in
reading achievement. Reading difficulties, regard-
less of whether they are specific or general in nature,
tend to remain stable throughout primary school.
MD, on the other hand, seem to be ameliorated by
competence in reading.

The subject area of mathematics is complex with
multiple domains. Difficulties may result from
deficits in one or several cognitive skills (Geary,
Hamson, & Hoard, 2000; Jordan & Hanich, 2000). In
a recent investigation, Hanich, Jordan, Kaplan, and
Dick (2001) found that second-grade children with
MD who are good readers (MD only) show a
different profile from children with comorbid MD
and RD (MD–RD) on cognitive variables related to

mathematics competence. In particular, children with
MD only showed an advantage over children with
MD–RD in areas that can be mediated by language
(e.g., story problems and verbal counting) but not
in areas that appear to depend on numerical under-
standingFsuch as estimation of numerical magni-
tudesFand on rapid retrieval of number facts. The
findings from Hanich et al.’s study also suggested
that second-grade children with RD who are good in
mathematics (RD only) had weaknesses in rapid
retrieval of addition facts, relative to children with
normal achievement (NA). It has been posited that
there is a relationship between deficits in processing
sounds, a hallmark of dyslexia, and accessing
arithmetic facts in long-term memory (Geary &
Hoard, 2001). Learning number facts is based on
counting, which involves number words and the use
of the basic phonetic system. However, it is not clear
why children with MD only, who presumably have
intact phonetic abilities, also show fact-retrieval
deficits.

Hanich et al. (2001) examined children’s mathe-
matical competencies only at one time point, raising
the question of whether the observed patterns of
competencies are stable. Faster growth rates of
children with MD only compared with children
with MD–RD in general mathematics achievement
indicate that the former group might outgrow or at
least compensate for some of their early weakness in
selected domains of mathematical cognition (Jordan
et al., 2002). Moreover, studies have suggested that
some MD are unstable during primary school
(Geary, 1990; Geary, Brown, & Samaranayake, 1991;
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Geary et al., 2000), with children showing low
mathematics achievement scores in one grade but
average scores or better in another grade. However,
weaknesses in specific areas, such as in fact retrieval,
appear to be highly stable (Geary et al., 1991; Ostad,
1997, 1998, 1999). It is also possible that the influence
of reading problems on mathematical competence
becomes greater over time, leading children with RD
only in second grade to ‘‘grow into’’ mathematical
weaknesses by third grade, especially with respect to
story problem solving.

The present study directly extended the base-
line work of Hanich et al. (2001), tracking the de-
velopment of mathematical competencies in the
same sample of children at three additional time
points: spring of second grade, fall of third grade,
and spring of third grade. (The original baseline data
were collected in the winter of second grade.) Thus,
we have a total of four longitudinal data points for
children with MD only, MD–RD, RD only, and NA
on each of the following tasks: exact calculation of
arithmetic combinations, forced retrieval of number
facts, approximate arithmetic (estimation), calcula-
tion principles, story problems, place value, and
written computation. All of the tasks, with the
exception of place value, involved the operations
of addition and subtraction. The areas of mathema-
tical cognition assessed on our tasks were related to
basic calculation, problem solving, and base-ten
concepts and are summarized in Table 1. The areas
provide a foundation for learning higher level
mathematics such as algebra (Miller, 1992) and
involve different cognitive processes (Ginsburg,
1997). Our tasks are based on those created for
studies of normal mathematical development and
have direct relevance to the teaching of mathematics
in young children (Hanich et al., 2001).

We examined children’s calculation strategies (on
exact calculation of arithmetic combinations) at each

time point, as it has been shown that children with
MD rely on finger counting more (and on retrieval
less) than do children without MD and that children
with MD only use counting strategies more accu-
rately than do children with MD–RD (Geary et al.,
2000; Jordan, Hanich, & Uberti, 2003; Jordan &
Montani, 1997). To date, however, little longitudinal
data are available on strategy development in
children with MD. Our forced-retrieval task, which
required children to answer number combinations
quickly, allowed us to look at automaticity and
fluency in calculation. By third grade, children’s
knowledge of arithmetic combinations should be
strong enough to allow routine retrieval (Lemaire,
Barrett, Fayol, & Abdi, 1994).

Because Hanich et al. (2001) did not assess
children’s IQ in their baseline study, it is possible
that performance differences between children with
MD only and children with MD–RD was attributable
primarily to differences in IQ (Geary, Hoard, &
Hamson, 1999). In the present investigation we
assessed children’s IQ, allowing us to examine
achievement-group effects beyond the influence of
overall intelligence. We also examined the influences
of gender, socioeconomic status (SES), and minority
status.

A main question posed in this study relates to
rates of growth in mathematics competencies over
time. To this end, growth-curve modeling was used
to analyze the data, a technique also employed by
Jordan et al. (2002) to examine achievement growth.
Growth-curve modeling provides an estimate of the
average level of mathematical competency at any
time point as well as the average rate of growth over
time in the mathematical outcomes for the sample
(Raudenbush & Bryk, 2002). It also provides an
estimate of the average rate of acceleration in growth
and is flexible enough to handle nonequidistant
measurement occasions. Growth-curve modeling

Table 1

Areas of Mathematical Cognition Assessed in the Present Study

Area Description

Basic calculation Accuracy on number combinations

Use of calculation procedures (e.g., finger counting)

Automatic fact retrieval and fluency

Computational estimation

Problem solving Arithmetic story problems with varied levels of verbal complexity

Understanding of calculation principles (i.e., relationships within and between arithmetic operations)

Base-ten concepts Understanding and representation of place value, such as enumeration, number identification,

positional knowledge, and digit correspondence

Written computation with multidigit numbers, including problems involving regrouping
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allowed us to predict individual levels and rates of
growth by IQ, ethnicity, income, and gender, as well
as by the four achievement groups (i.e., MD only,
MD–RD, RD only, and NA). Because of its clear
focus on growth and its considerable flexibility,
growth-curve modeling is seen as a more appro-
priate analytic strategy than conventional methods
for the analysis of longitudinal data, such as
repeated-measures ANOVA.

Method

Participants

In the fall of 1999, we screened more than 600
second-grade children (age range between 7 and 9
years) from one school district in New Castle
County, Delaware. Using the Reading and Mathe-
matics Composites from the Woodcock-Johnson
Psycho-Educational Battery–Revised (WJ), Form A
(Woodcock & Johnson, 1990), we classified 210
children into one of four achievement groups: MD
only, MD–RD, RD only, and NA. The WJ Mathe-
matics Composite includes Calculation and Applied
Problems subtests and the WJ Reading Composite
includes Letter-Word Identification and Passage
Comprehension subtests. Based on grade-level
norms, children with Mathematics Composite Scores
at or below the 35th percentile were classified as MD
and children with Reading Composite or Letter-
Word Identification scores at or below the 35th
percentile were classified as RD. We used the
Reading Composite or Letter-Word Recognition
criteria in reading because on our initial screening
data revealed that a number of children had

borderline reading composite scores despite low
letter-word recognition scores. Because we were
interested in children with reading decoding weak-
nesses, we decided to include these children in the
study. It should be noted that all but 2 of the children
in the RD only group and 1 in the MD–RD group
scored at or below the 35th percentile in Letter-Word
Recognition subtest, suggesting that children classi-
fied as RD were characterized by decoding pro-
blems. A detailed description of our screening
procedure is presented in Hanich et al. (2001).

For the present longitudinal study, only children
who completed all phases of the project were
included. Thus, our final sample of 180 children
included 46 children with MD only, 42 children with
MD–RD, 45 children with RD only, and 47 children
with NA. The mean mathematics and reading scores
for the four achievement groups, along with data
related to gender, ethnicity, parental income level,
and special education, are presented in Table 2.
Within each achievement group, children identified
as ethnic minority were primarily African American
(480% for each achievement group). Eligibility for
the subsidized lunch program at school was used to
determine low-income status. The MD only and
MD–RD groups did not differ significantly in
mathematics achievement and the RD only and
MD–RD groups did not differ significantly in read-
ing achievement. None of the children in NA or
MD only groups were retained in second grade.
However, 4 children in the MD–RD group and 7
children in the RD only group repeated second
grade in Year 2 of our study. The retention issue is
addressed in the Results section.

Table 2

Descriptive Information for Participants by Achievement Group

Achievement group N M/Fa

Percentage

ethnic

minorityb

Percentage

low

incomec

Percentage

special

educationd

Reading

composite

percentile scores

Letter-word

identification

percentile scores

Mathematics

composite percentile

scores

MD only 46 21/25 61 46 2 71.67 66.34 22.87

(14.32) (18.02) (9.74)

MD–RD 42 23/19 48 50 40 24.91 21.01 21.07

(13.43) (11.41) (10.80)

RD only 45 29/16 60 56 27 26.96 23.24 60.42

(10.42) (9.65) (16.03)

NA 47 23/24 43 40 0 71.96 63.66 68.81

(13.27) (16.46) (12.02)

Note. MD5math difficulties but normal reading; MD–RD5math and reading difficulties; RD only5 reading difficulties but normal
math; NA5normal achievement in math and reading. Standard deviations are in parentheses.
aM/F stands for male/female. bWithin each achievement group, children identified as ethnic minority were primarily African American
(480% for each achievement group). cLow income was determined by eligibility for the subsidized lunch program at school. dSpecial
education services were provided in either second or third grade.
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Materials

Each participant was given seven mathematics
tasks, presented in the following order: (a) exact
calculation of arithmetic combinations, (b) story
problems, (c) approximate arithmetic, (d) place
value, (e) calculation principles, (f) forced retrieval
of number facts, and (g) written computation. The
tasks are exactly the same as those used by Hanich
et al. (2001). To emphasize the required operations
and to prevent wrong operation errors (e.g., adding
instead of subtracting) we separated addition and
subtraction problems on exact calculation of arith-
metic combinations, approximate arithmetic, forced
retrieval of number facts, and written computation.

Exact calculation of arithmetic combinations. Chil-
dren were given four addition and four subtraction
arithmetic combinations (918; 316; 516; 817; 9–3;
17–9; 11–5; 15–8), presented individually. A written
version of the problem (horizontal format) was
shown at the same time it was read aloud by the
examiner. The examiner told children to use any
method they wanted to figure out the answer. To get
a rough estimate of solution time, the experimenter
began timing the child with a stopwatch immedi-
ately after reading the problem. As soon as the child
began to state his or her answer, the examiner
stopped timing. If a child answered before the
experimenter finished reading the problem a time
of 0 was recorded. If a child stated an answer but
then wanted to think some more and answer again
(in most cases the child immediately said ‘‘no’’ after
giving the first answer), the examiner restarted the
stopwatch. If the child stated a second answer after
the original answer, the examiner made a best
estimate of how many additional seconds the child
took. Response times were recorded for each
arithmetic combination. Although the stopwatch
was marked in units of .1 s, times were rounded to
the nearest second. The examiners agreed 96% on
recording children’s response times for a sample set
of trials (to the nearest second with rounding).

On each item, the experimenter observed the
child’s strategy use (e.g., counting verbally or with
fingers, no overt strategy, etc.) and wrote down what
the child did on the score sheet. Right after the child
answered, the experimenter asked the child to give
an explanation and recorded the response verbatim.
The child and the experimenter agreed on 97%
of the trials, which is in keeping with other studies
(Geary et al., 2000; Siegler, 1987). If the child and
the experimenter disagreed, the experimenter’s
observation was used when the strategy she observed
was readily apparent (e.g., finger counting). In

ambiguous cases, the child’s explanation was used
(Geary et al., 2000).

Story problems. The experimenter read each child
10 story problems, ranging from conceptually simple
to conceptually complex (Carpenter & Moser, 1984;
Riley & Greeno, 1988; Riley, Greeno, & Heller, 1983).
The set included four types of story problems:
change problems (n5 3; e.g., Nina had 9 pennies.
Then she gave 3 pennies to Anthony. How many
pennies does Nina have now?), combine problems
(n5 2; e.g., Emily has 3 pennies. John has 6 pennies.
How many pennies do they have altogether?),
compare problems (n5 3; e.g., Dennis has 7 pennies.
Molly has 5 pennies. Howmany pennies does Dennis
have more than Molly?), and equalize problems
(n5 2; e.g., Claire has 4 pennies. Ben has 9 pennies.
Howmany pennies does Claire need to get to have as
many as Ben?). All problems involved simple
calculations with sums and minuends of 9 or less.

Children were told to use whatever strategy they
wanted to get the correct answer and were given a
container of play pennies to use during the activity.
The experimenter read each problem aloud with an
accompanying written version of the problem in full
view of the child. Children were asked to wait until
the problem was read in its entirety before giving an
answer.

Approximate arithmetic. The approximate arith-
metic task was adapted from Dehaene, Spelke, Pinel,
Stanescu, and Tsivkin (1999). Children were shown
10 addition and 10 subtraction problems, each
having two proposed answers (e.g., 4155 10 or 20;
16–75 4 or 8; 40–305 11 or 31; 50–95 20 or 40). Both
of the answers were incorrect but one was within a
few units of the correct answer whereas the other
was further away. Each problem was shown in-
dividually. The child’s task was to choose the
number that was closest to the correct answer. As
the experimenter read each problem, she also
displayed a written version in full view of the child.
Children were asked to answer right away and not
to calculate. To prevent children from calculating,
they were allowed only 5 s to answer. If the child did
not answer within the time limit, a response of ‘‘no
answer’’ was recorded and the problem was scored
as incorrect. Children were presented with two
practice problems.

Place value. The place value task, adapted from
Hiebert and Wearne (1996), Kamii (1989), and Ross
(1989), involved three activities: counting and number
identification, positional knowledge, and digit
correspondence.

First, the child was given 16 colored chips and
asked to count the chips. If the child made a mistake,
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the experimenter counted the chips aloud so that the
child understood there were 16 chips in all. Number
identification required the child to read two- and
three-digit numbers printed on a card (i.e., 16, 37,
415). After the child read the numbers aloud, he or
she was asked which number was in the tens place,
the ones place, and if relevant, the hundreds place
(positional knowledge). The items were scored using
a pass–fail criterion in which all of the digit places
needed to be identified correctly for the problem to
be scored as correct.

The first digit-correspondence activity followed
the number-identification task for the number 16.
The experimenter circled the 6 in the number 16 and
asked the child to use the chips to show what that
part stands for in the number 16 (6 chips). The
experimenter then circled the 1 and asked the child
to use the chips to show what that part stands for (10
chips).

The subsequent digit-correspondence activities
directly challenged children’s understanding of
two-digit numbers. Children were given two condi-
tions: standard place-value partitioning and non-
standard place-value partitioning. In the standard
condition, the tens place of the digit was represented
by unit squares grouped together in tens and the
ones place by individual unit squares. The non-
standard condition was the same except that one of
the groups of ten was separated into 10 individual
unit squares. The experimenter first showed the
child a card showing the number 43, along with a
picture of 43 squares grouped with four 10-unit
squares and 3 individual unit squares. The experi-
menter asked the child draw a circle around the
squares that the 3 part in the number 43 stands for
(i.e., 3 individual unit squares) and then to draw a
circle around the squares that the 4 part in the
number 43 stands for (i.e., four 10-unit squares). The
child was shown a second card with the number
43 printed on it and a corresponding picture of 43
squares. This time the squares were in a nonstan-
dard partitioning arrangement with 3 groups of 10-
unit squares and 13 individual unit squares. The
same procedure as the one described for the
standard partitioning item was used. The standard
and nonstandard partitioning activities were
repeated with another two-digit number (i.e., 52).

In the last digit-correspondence activity (also
nonstandard partitioning), the child was given a
card with the number 26 printed on it along with a
picture of 26 stars arranged in six groups of four and
one group of two. The experimenter asked the child
to draw a circle around the number of stars that the 6
stands for in the number 26 and then around the

number of stars that the 2 stands for in the number
26. The total number of items on the place-value task
was 12.

Calculation principles. The calculation principles
task, based on the work of Baroody (1999) and
Russell and Ginsburg (1984), involved solving six
pairs of problems in which the given answer to the
first of the pair could be used to solve the second.
Two items assessed understanding of the commu-
tative principle, that the order of the addends does
not affect the sum (i.e., 471865 133, so 861475 ?,
and 941685 162, so 681945 ?); two items assessed
understanding of the inversion principle, that sub-
traction is the inverse of addition (i.e., 271695 96, so
96–695 ?, and 361985 134, so 134–365 ?); and two
items assessed understanding of the doubles plus
one pattern (i.e., 371375 74, so 371385 ?, and
641645 128, so 651645 ?). Each problem was
shown and read to the child at the same time. We
used two-digit numbers so children could not
retrieve answers by rote. The child was told to give
an oral response as quickly as possible. To keep
children from calculating, a 5-s time limit was used.
If a child did not answer within 5 s, the answer was
scored as incorrect.

Forced retrieval of number facts. Four addition and
four subtraction combinations were read to each
child (i.e., 412; 914; 719; 318; 6–4; 13–9; 16–7; 11–8),
along with a visual presentation. The experimenter
told children to give an answer right away or to tell
her that they would need more time. Right after
reading the combination, the experimenter started
timing. If the child did not answer within 3 s or said
he or she needed more time, the item was recorded
as ‘‘no answer’’ and scored as incorrect. The forced-
retrieval task is based on the method developed by
Russell and Ginsburg (1984) and Jordan and
Montani (1997). The absence of n11 combinations
minimized the possibility of children using a
‘‘number-after’’ rule, rather than retrieval, to get
the correct answer (Baroody & Tiilikainen, 2003).
Note that a 5-s limit was used on the approximate
arithmetic and calculation principles tasks, in con-
trast to the 3-s limit on the forced-retrieval task. We
allowed more time on the former tasks because they
required children to evaluate two problems or
answers before responding.

Written computation. Children were given 8 two-
and three-digit written computation problems, 4
involving addition and 4 involving subtraction.
Regrouping was necessary on half of the additions
and half of the subtractions.

To assess IQ, each child was given the Wechsler
Abbreviated Scale of Intelligence (WASI; Wechsler,
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1999). The correlation between the WASI and the
longer version Wechsler Intelligence Scale for Chil-
dren–III is .87. The WASI includes both verbal and
performance scales.

Data-Collection Procedures

In both years of the project, we had a cadre of four
female experimenters who underwent extensive
training. Children were tested individually in their
schools. They were given the mathematics tasks
four times: January of second grade, April of se-
cond grade, November of third grade, and May of
third grade, constituting a total of 16 months. Each
session lasted between 30 and 45 min, with the third-
grade sessions typically being shorter than the
second-grade sessions. Although the individual
items on each task were the same for each test
period, we changed their order of presentation
during the second and fourth test periods. However,

addition items were always presented before sub-
traction items on exact calculation of arithmetic
combinations, approximate arithmetic, forced retrie-
val of number facts, and written computation. The
IQ test was given to children in January of third
grade. The experimenters were not given informa-
tion about children’s group membership.

Results

Internal reliability estimates for the mathematics
tasks (at Time 4) using coefficient alphas were .66 for
exact calculation of number combinations, .72 for
story problems, .85 for place value, .80 for calcula-
tion principles, .70 for forced retrieval of number
facts, .58 for approximate arithmetic, and .67 for
written computation.

Growth-curve analyses were performed on each
of the mathematics tasks. A brief introduction to
growth-curve modeling, including its purpose and
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the interpretation of statistical values, is presented in
the Appendix. The average empirical growth trajec-
tories, by achievement group, for each mathematics
task are shown in Figure 1. Models included the

effects of achievement-group membership and time-
invariant predictors (i.e., gender, ethnicity, income,
and IQ) on average performance level at the end of
third grade (intercept at Time 4) and rate of growth

Table 3

Baseline Model: Growth Curve Results for Mathematics Tasks

Estimate

Exact calculation of

arithmetic combinations

Story

problems

Approximate

arithmetic

Place

value

Calculation

principles

Forced retrieval of

number facts

Written

computation

Intercept 6.84n 7.34n 14.96n 7.22n 4.60n 4.02n 5.57n

Slope 0.02 0.07n 0.03 � 0.03 0.08n 0.10n 0.14n

Var(intercept) 1.39n 3.60n 5.37n 7.42n 1.60n 2.70n 1.37n

Var(slope) 0.01n 0.01n 0.01 0.01n 0.00 0.00n 0.01n

R(int. slope) 0.20 0.43n 0.64n 0.71n 0.16 0.54n 0.34

Acceleration variable � 0.00 � 0.00n � 0.00 � 0.01n � 0.00 � 0.00 � 0.00

Note. On exact calculation of arithmetic combinations, the dependent number reflects accuracy rather than latency or strategies. Var( )
stands for the variance of the parameters in parentheses.
npo.05.
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Table 4

Model 1: Growth Curve Results for Mathematics Tasks with Effects of Achievement Group Membership

Estimate

Exact calculation of

arithmetic combinations

Story

problems

Approximate

arithmetic

Place

value

Calculation

principles

Forced retrieval of

number Facts

Written

computation

Intercept 6.05n 5.83n 13.73n 6.22n 3.58n 3.07n 5.15n

Slope � 0.00 0.10 0.06 0.06 0.02 0.04 0.21n

Var(intercept) 1.19n 2.60n 4.68n 6.47n 1.31n 2.19n 1.17n

Var(slope) 0.01n 0.01n 0.01 0.01n 0.00n 0.00n 0.01n

R(int. slope) 0.35 0.52n 0.70n 0.74n 0.23 0.65n 0.42n

Acceleration variable � 0.01n � 0.00 � 0.00 � 0.00 � 0.01 � 0.00 0.00

Intercept on NA 1.41n 2.63n 1.90n 2.36n 1.74n 1.95n 1.03n

Slope on NA 0.03 � 0.13 0.06 � 0.13 0.08 0.04 � 0.08

Intercept on RD only 0.94n 1.64n 1.98n 1.23n 1.19n 1.21n 0.26

Slope on RD only 0.03 0.03 0.08 � 0.11 0.06 0.02 � 0.10

Intercept on MD only 0.73n 1.62n 1.07 0.33 1.06n 0.53 0.35

Slope on MD only 0.05 � 0.03 0.10 � 0.09 0.11 0.16 � 0.08

Acceleration on NA 0.01 � 0.01 0.01 � 0.01 0.01 0.00 � 0.00

Acceleration on RD only 0.01 0.00 0.01 � 0.01 0.00 0.00 � 0.00

Acceleration on MD only 0.01 � 0.00 0.01 � 0.01 0.01 0.01 � 0.01

Note. On exact calculation of arithmetic combinations, the dependent number reflects accuracy rather than latency or strategies.
Var( ) stands for the variance of the parameters in parentheses.
npo.05.

Table 5

Model 2: Growth Curve Results for Mathematics Tasks with Effects of Achievement Group Membership and Time-Invariant Predictors

Estimate

Exact calculation of

arithmetic combinations

Story

problems

Approximate

arithmetic

Place

value

Calculation

principles

Forced retrieval of

number facts

Written

computation

Intercept 6.15n 6.39n 13.30n 6.83n 3.68n 2.92n 5.32n

Slope � 0.01 0.09 0.07 0.08 0.02 0.04 0.18n

Var(intercept) 1.06n 1.70n 3.91n 4.64n 1.04n 1.95n 0.98n

Var(slope) 0.01n 0.01n 0.01 0.01n 0.00n 0.00n 0.01n

R(int. slope) 0.41n 0.59n 0.73n 0.73n 0.31 0.63n 0.43

Acceleration variable � 0.01n � 0.00 � 0.00 � 0.00 � 0.01 � 0.00 0.00

Intercept on NA 0.93n 1.44n 1.41n 1.04 1.12n 1.48n 0.60

Slope on NA 0.04 � 0.14 0.06 � 0.16 0.08 0.03 � 0.07

Intercept on RD only 0.76n 1.29n 1.69n 0.86 0.98n 1.00n 0.11

Slope on RD only 0.03 0.03 0.08 � 0.11 0.06 0.02 � 0.10

Intercept on MD only 0.51 1.18n 1.04 0.04 0.88n 0.40 0.14

Slope on MD only 0.05 � 0.03 0.11 � 0.10 0.10 0.16 � 0.08

Acceleration on NA 0.01 � 0.01 0.01 � 0.01 0.01 0.00 � 0.00

Acceleration on RD only 0.01 0.00 0.01 � 0.01 0.00 0.00 � 0.00

Acceleration on MD only 0.01 � 0.00 0.01 � 0.01 0.01 0.01 � 0.01

Intercept on gender � 0.25 � 0.36 1.48n 0.90n 0.16 0.41 � 0.19

Slope on gender � 0.00 � 0.02 0.03 0.01 � 0.02 0.02 0.04n

Intercept on ethnicity 0.33 0.10 � 0.22 � 0.56 � 0.07 0.04 0.40

Slope on ethnicty � 0.01 0.02 � 0.02 � 0.01 � 0.00 � 0.01 0.02

Intercept on income 0.21 0.23 � 0.04 � 0.56 0.26 0.28 � 0.14

Slope on income 0.02 0.03 � 0.04 � 0.04 0.02 0.01 � 0.01

Intercept on IQ 0.04n 0.10n 0.05n 0.10n 0.05n 0.04n 0.04n

Slope on IQ 0.00 0.00 0.00 0.00 � 0.00 0.00 � 0.00

Note. On exact calculation of arithmetic combinations, the dependent number reflects accuracy rather than latency or strategies. Var( )
stands for the variance of the parameters in parentheses.
npo.05.
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(slope) in the mathematics tasks. For each task, three
growth-curve models were computed: (a) baseline
model, which provided estimates of the slope and
the intercept (Table 3); (b) Model 1, which adds the
effects of achievement-group membership (Table 4);
and (c) Model 2, which adds the effects of the
predictor variables (i.e., gender, income, ethnicity,
and IQ; Table 5). The MD–RD group was used as the
reference group for achievement-group compari-
sons. In Model 2, males, minority students, and
students participating in the subsidized lunch
program were dummy coded 1. In addition, for
interpretability, IQ was centered on the sample
mean. Thus, as noted in the Appendix, the average
Time 4 measurement and average slope are with
reference to White female MD–RD students with IQ
scores at the mean of the sample.

We included both linear and quadratic models in
the growth-curve analyses. Although the accelera-
tion variable was significant in some models, the
small size of the coefficients indicates minimal
effects. Moreover, none of the analyses revealed
significant achievement-group effects with regard to
acceleration of growth. Therefore, we limit our
discussion to linear models.

It should be noted that growth-curve modeling is
flexible enough to handle unequal spacing of
measurement occasions. For this study, the measure-
ment occasions were parameterized in such a way as
to reflect rates of growth in terms of monthly
increments over the 16 months of the study.

Exact Calculation of Arithmetic Combinations

We guide the reader through Tables 3 to 5 on exact
calculation of arithmetic combinations. This descrip-
tion will help the reader interpret results for
subsequent tasks, which are discussed in less detail.

The intercept and slope on exact calculation of
arithmetic combinations for the total sample are
displayed in the baseline model in Table 3. The
average raw score at the end of third grade was 6.84
(of 8) and the average growth was 0.02 points over 2
years.

The effects of adding achievement-group mem-
bership to the model are summarized under Model 1
in Table 4. The average score at the end of third
grade on exact calculation of arithmetic combina-
tions for the MD–RD group was 6.05, and the slope
was –0.00. The methodology of growth-curve mod-
eling allows for a large-sample test of differences in
the intercept and growth rate as a function of
grouping variables. This is discussed more fully in
the Appendix. In the context of this study, an

inspection of the effects of achievement-group
membership shows that the NA, RD only, and MD
only groups had significantly higher scores at the
end of third grade on exact calculation of arithmetic
combinations than did the MD–RD group.

Model 2 in Table 5 shows the effects of adding
time-invariant predictors of gender, ethnicity, in-
come, and IQ to the model. Because of the choice for
coding dummy variables, the slope and intercept
refer to White females with average IQs in the MD–
RD group from middle-income families. The
intercept for this group was 6.15 and the slope was
–0.01. Holding predictor variables constant, the NA
and RD only groups had significantly higher scores
at Time 4 than did the MD–RD group. Although the
MD only group had significantly higher scores at
Time 4 than did the MD–RD group in Model 1
(without the predictor variables), the MD only group
did not differ from the MD–RD group on Time 4
scores when the predictors were taken into account
in Model 2. There were no significant differences in
slope values among the achievement groups. IQ was
a significant predictor of the intercept at Time 4; that
is, children with higher IQs scored better on exact
calculation of number combinations than did chil-
dren with lower IQs. The effect of IQ was not
significant on the slope. Gender, ethnicity, and
income did not predict the intercept or the slope.

We performed post hoc mean comparisons using
ANOVAs with Tukey tests (po.05) to examine mean
differences among the achievement groups on exact
calculation of number combinations at Time 4 (i.e.,
differences among NA, MD only, and RD only
groups). The MD only, RD only, and NA groups did
not differ significantly from each other.

Story Problems

Holding predictor variables constant (Model 2 in
Table 5), the NA, RD only, and MD only groups
ended third grade (Time 4) with significantly higher
story problems scores than did the MD–RD group.
There were no achievement-group differences in
growth rate. There was a significant effect of IQ on
the intercept for story problems, favoring children
with higher IQ scores. There were no effects of
gender, ethnicity, or income on the intercept or on
the slope.

Post hoc mean comparisons at Time 4 showed that
the NA group performed significantly better than
the MD only and RD only groups. The MD only and
RD only groups did not differ from each other.
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Approximate Arithmetic

The NA and RD only groups had significantly
higher scores at the end of third grade on approx-
imate arithmetic than did the MD–RD group,
independent of the predictor variables (Model 2 in
Table 5). The MD only group did not differ from the
MD–RD group on Time 4 approximate arithmetic
scores. Achievement-group membership did not
predict growth rate. There was relatively little
growth in approximate arithmetic across all achieve-
ment groups. IQ and gender were significant
predictors of Time 4 scores, favoring boys and
children with higher IQs. There were no significant
predictors of the slope.

Post hoc mean comparisons at Time 4 showed
that both the NA and RD only groups performed
better than did the MD only group. The NA and RD
only groups did not differ from each other.

Place Value

In Model 1 (Table 4), the MD–RD group
performed significantly worse than the NA and RD
only groups at Time 4. However, when predictor
variables were added in Model 2 (Table 5), these
achievement-group differences disappeared. There
was no achievement-group effect for growth rate.
There was a significant effect of IQ and gender on
the intercept but not on the slope. Boys ended third
grade with significantly higher place value scores
than girls, and children with higher IQs had higher
scores than did children with lower IQs. Ethnicity
and income did not predict either the intercept at
Time 4 or the slope.

Post hoc mean comparisons at Time 4 showed the
NA group performed better than the MD only and

RD only groups. The MD only and RD only groups
did not differ from each other.

Calculation Principles

Holding the predictor variables constant, children
in the NA, RD only, and MD only groups had higher
scores at the end of third grade than did children in
the MD–RD group (Table 5). There were no sig-
nificant achievement-group differences on the slope.
IQ was a significant predictor for Time 4, favoring
children with higher IQs. Gender, ethnicity, and
income did not predict the slope or Time 4 scores.

Post hoc comparisons at Time 4 revealed that the
NA group performed better than the MD only group
but not the RD only group. The MD only and RD
only groups did not differ from each other.

Forced Retrieval of Number Facts

Controlling for predictor variables, the NA and
RD-only groups had significantly higher scores at
the end of third grade than did the MD–RD group,
while the MD only group did not differ from the
MD–RD group (Table 5). There was a significant
effect of IQ on Time 4 scores, favoring children with
higher IQs, but not on the slope.

Post hoc comparisons at Time 4 showed that the
NA group performed significantly better than the
MD only group but not the RD-only group. The RD
only group performed significantly better than the
MD only group.

Written Computation

When we held predictor variables constant
(Model 2 in Table 5), there were no significant

Table 6

Mean Number of Times Finger Counting Was Used on Exact Calculation of Arithmetic Combinations and Mean Percentage of Times It Yielded a

Correct Answer Across Four Time Points (Number of Items5 8)

Achievement group Time 1 Percentage correct Time 2 Percentage correct Time 3 Percentage correct Time 4 Percentage correct

MD only 4.74 77 4.87 81 4.33 81 3.96 81

(2.67) (0.27) (2.76) (0.20) (2.95) (0.21) (2.82) (0.26)

MD–RD 5.60 55 5.21 68 5.07 79 5.14 71

(2.64) (0.28) (2.93) (0.29) (2.78) (0.23) (2.75) (0.31)

RD only 4.71 76 4.44 84 4.02 82 3.11 85

(2.60) (0.27) (2.62) (0.20) (2.45) (0.23) (2.51) (0.33)

NA 4.06 84 3.55 79 3.28 88 2.79 85

(2.65) (0.20) (2.54) (0.29) (2.46) (0.25) (2.56) (0.27)

Note. MD5math difficulties but normal reading; MD–RD5math and reading difficulties; RD only5 reading difficulties but normal
math; NA5normal achievement in math and reading. Standard deviations are in parentheses. Time 15winter 2000; Time 25 spring
2000; Time 35 fall 2000; Time 45 spring 2001.
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achievement-group differences on the slope or
intercept. The NA group, however, had a signifi-
cantly higher score at the end of third grade than did
the MD–RD group when the predictors were not
considered (Model 1 in Table 4). There were no
significant achievement-group differences in growth
rates. There was a significant effect of IQ on Time 4
scores, favoring children with higher IQs. Gender
was a significant predictor of growth rate, with boys
having a 0.04-point advantage in growth over girls.

Post hoc comparisons at Time 4 showed that the
NA group performed significantly better than the
MD only and RD only groups, who did not differ
from each other.

Summary of Growth-Curve Analyses for the
Mathematics Tasks

We did not find any significant differences in
growth rate by achievement group. The NA group
had significantly higher ending scores than did the
MD–RD group on all of the mathematics tasks.
However, the group difference on written computa-
tion and place value disappeared when we added

predictor variables (i.e., gender, income ethnicity,
and IQ) in Model 2.

The RD only group also had higher ending scores
than did the MD–RD group on most tasks, with the
exception of place value (only after predictors were
added) and written computation (before predictors
were added).

The MD only group showed significantly higher
ending scores than did the MD–RD group on exact
calculation of arithmetic combinations, story
problems, and calculation principles. However,
the group effect for exact calculation of number
combinations was not significant after predictor
variables were added in Model 2. The two MD
groups did not differ on approximate arithmetic,
forced retrieval of number facts, place value, or
written computation.

IQ predicted performance at the end of third
grade on all of the mathematics tasks, whereas
gender (favoring boys) predicted performance only
on approximate arithmetic and place value. Gender
(favoring boys) predicted growth for written
computation. Ethnicity and income level, by them-
selves, did not predict performance or growth.

Table 7

Growth Curve Results for Mean Number of Times Finger Counting Was Used on Exact Calculation of Arithmetic Combinations

Estimate

Baseline

model

Model 1 with effects of

achievement group membership

Model 2 with effects of

achievement group membership and

time-invariant predictors

Intercept 3.77n 5.16n 5.26n

Slope 0.01 0.05 � 0.02

Var(intercept) 5.38n 5.50n 4.09n

Var(slope) 0.00 0.01n 0.00n

R(int. slope) 0.31 0.43 0.25

Acceleration variable 0.01n 0.00 0.00

Intercept on NA � 2.35n � 1.36n

Slope on NA � 0.10 0.10

Intercept on RD only � 2.03n � 1.26n

Slope on RD only � 0.20 0.08

Intercept on MD only � 1.22n � 0.65

Slope on MD only � 0.13 0.01

Acceleration on NA � 0.00 0.01

Acceleration on RD only � 0.01 0.01

Acceleration on MD only � 0.01 0.00

Intercept on gender � 1.17n

Slope on gender 0.02

Intercept on ethnicity � 0.07

Slope on ethnicity 0.02

Intercept on income 0.07

Slope on income 0.01

Intercept on IQ � 0.07n

Slope on IQ � 0.01n

Note. Var( ) stands for the variance of the parameters in parentheses.
npo.05.
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Strategy Analyses

Across all achievement groups at each time of
testing, finger counting was the most commonly
used calculation strategy. Table 6 presents the mean
number of trials on which finger counting was used
as well as the mean percentage of time finger
counting yielded a correct answer, by achievement
group and time of testing.

To determine whether there were achievement-
group differences in the frequency and growth of
finger counting, we performed a growth-curve
analysis on the mean number of times children used
finger counting. (We did not perform analyses on the
other strategies because they were used so infre-
quently.) The model included the effects of achieve-
ment-group membership and time-invariant
predictors (i.e., gender, ethnicity, income level, and
IQ) on performance level at Time 4 (intercept) and
rate of growth (slope) in finger counting. As in the
previous analyses, the MD–RD group was used as
the reference group for achievement-group compar-
isons.

The growth-curve model is shown in Table 7.
Holding predictors constant, the MD–RD group
used finger counting significantly more often than
did the NA and RD only groups but not the
MD only group at the end of third grade. No
achievement-group differences in growth rate were
observed. There was a significant effect of gender
and IQ on finger counting at the end of third grade.
Girls used their fingers more often than did boys,
and children with lower IQs used their fingers more
often than did children with higher IQs. IQ was also
a significant predictor of the slope, suggesting that
children with higher IQs decline in finger use more
rapidly than do children with lower IQs. Ethnicity
and income did not predict finger use at Time 4 or
the slope.

Although children with MD only and MD–RD
did not differ significantly in frequency in finger
use, it is interesting to note that with the exception
of the third time point (fall of third grade), children
with MD only were more accurate with their
fingers (see Table 6). The accuracy gap was
especially wide (55% accuracy for MD–RD vs. 77%
accuracy for MD only) at the first time point (winter
of second grade).

Retention

We examined children who were retained in
second grade (n5 11; 4 MD–RD children and 7 RD
only children) in Year 2 of the study versus children

who were promoted to third grade. Although
retained children performed below promoted chil-
dren on the mathematics tasks overall, ANOVAs
revealed no Time� Group interactions. That is,
retained children grew at about the same rate on
the mathematics tasks as promoted children in Year
2 of our study.

Discussion

Over a 16-month period, we investigated the
development of mathematical competencies in chil-
dren with different patterns of mathematics and
reading achievement (i.e., MD only, MD–RD, RD
only, and NA). We examined children’s ending level
of performance as well as their growth rates, using
growth-curve modeling procedures. Of particular
interest was the comparison between two subgroups
of children with MD, namely children with MD only
versus children with MD–RD.

Hanich et al.’s (2001) previous baseline work
revealed that in mid second grade, children with
MD only had an advantage over their MD–RD
counterparts in two areas of mathematical cognition:
exact calculation of arithmetic combinations and
story problems. In the present study, which exam-
ined performance in the same children on the same
tasks at the end of third grade, the MD only group
continued to show an advantage over the MD–RD
group on these two tasks. However, the end-of-third-
grade performance difference between the two MD
groups on exact calculation of number combinations
disappeared when we considered predictor vari-
ables of IQ, gender, ethnicity, and income level. To
determine whether the early difference between the
MD only and MD–RD groups on exact calculation of
number combinations at Time 1 reported by Hanich
et al. was a consequence of IQ differences in parti-
cular, we performed the analysis again at Time 1
with IQ (as measured in third grade) as a covariate.
Hanich et al’s original findings held, even when we
considered IQ. In the present study, the MD only
group also performed better than the MD–RD group
at the end of third grade on calculation principles,
irrespective of predictor variables.

The tasks that did not differentiate the MD only
group from the MD–RD group (either at the end of
third grade in the present study or in second grade in
Hanich et al., 2001) were forced retrieval of number
facts, approximate arithmetic, place value, and
written computation. The two MD groups did not
differ in their growth rates (from mid second to the
end of third grade) on any of the mathematics tasks.
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What do the present findings tell us about the
characteristics and growth of children with learning
difficulties in mathematics? First, the difficulties of
children identified as MD–RD in early second grade
are pervasive and stable over second and third
grades, even when we hold predictors, such as IQ,
constant. Despite their weaknesses, however, chil-
dren with MD–RD achieved on the mathematics
tasks in this study at a rate similar to other children.

Jordan et al. (2002) reported that second graders
with MD who are good readers achieved faster over
a 2-year period on a standardized diagnostic
mathematics achievement test than did children
with MD who are poor readers. The findings
suggested that MD only children grew out of or at
least compensated for some of their earlier achieve-
ment weaknesses. One reason for this may be the
MD-only group’s strengths in problem solving, as
evidenced by their advantage over children with
MD–RD on calculation principles as well as on story
problems in the present investigation. Children’s
understanding of calculation principles, such as the
commutative and inversion principles, reflects a
grasp of relationships within and between arithmetic
operations (Hanich et al., 2001). The ability to solve
story problems involves comprehending the words
of the problem and translating the verbal informa-
tion to mathematical representations (Geary, 2000;
Jordan &Montani, 1997). Story-problem-solving skill
is associated with verbal comprehension more
generally, which reflects or is even determined by
reading skill (Jordan et al., 2002; Stanovich, 1991).

It is interesting that children with MD only and
RD only performed at about the same levels in
problem solving throughout the present study. (The
level was slightly below that of NA children who
had no learning difficulties, however.) It is possible
that children in the two achievement groups use
different pathways to solving problems; that is,
children with RD only may exploit their mathema-
tical strengths to compensate for reading and verbal
weaknesses, whereas children with MD only may
take advantage of reading and verbal strengths to
compensate for mathematical weaknesses. Chil-
dren’s performance may be differentiated further
on a wider range of story-problem tasks, for
example, tasks assessing the ability to translate and
integrate several sentence problems and the ability
to recognize superficial or irrelevant structures in
story problems (Fuchs & Fuchs, 2002).

In the present study children with MD only
appeared to have consistent difficulties in rapid fact
retrieval and, by extension, calculation fluency. They
performed as poorly as children with MD–RD when

required to respond to number combinations quickly
(on a forced-retrieval task) and relied on their fingers
as much as children with MD–RD (on the exact
calculation task), even at the end of third grade. It
should be noted, however, that children with MD
only used finger-counting strategies more accurately
than did children with MD–RD, suggesting better
facility with counting procedures in the MD only
group than in the MD–RD group (Bull & Johnston,
1997; Geary et al., 1999; Jordan & Hanich, 2000;
Jordan & Montani, 1997). Children with MD only
seem to have trouble making the transition from
procedure-based to memory-based problem calcula-
tion (Geary, 2003).

Our data do not support the suggestion that
difficulties in reading and fact retrieval share a core-
underlying deficit related to phonological processing
(e.g., Geary, 1993; Hanich et al., 2001; Miles, 1993).
When we isolated reading difficulties from mathe-
matics difficulties, we found that children with RD
only (who were characterized by decoding weak-
nesses) performed better than children with MD–RD
on the forced-retrieval task but children with MD
only, who are proficient readers, did not. The RD
only group also performed as well as the NA group
in forced retrieval. Fact-retrieval deficits appear to be
a central characteristic of MD (i.e., both MD only and
MD–RD) but not of RD (i.e., RD only), at least with
respect to addition and subtraction operations.

It is possible to argue, however, that even with the
stringent 3 s criterion on the forced-retrieval task
some children used a strategy other than retrieval to
get a correct answer rapidly (Baroody, 1999).
Although we did not use ‘‘n11’’ combinations,
which can be solved quickly with a number-after
rule principle, children may have used other
calculation shortcuts related to relational knowledge
(such as subtraction being the inverse principle:
4125 6 so 6–45 2). On inversion problems, such as
28136–36, Siegler and Stern (1998) found that
second-grade children employed calculation short-
cuts unconsciously, with solution times averaging
less than 3 s. Regardless, however, of whether
children used retrieval or shortcut strategiesFcon-
scious or unconsciousFwhen solving timed arith-
metic combinations, competence clearly depends on
fast mental processing.

Cognitive mechanisms underlying retrieval defi-
cits in children may include problems in represent-
ing and retrieving information in long-term memory
(Ashcraft, 1992; Geary, 1993; Rasanen & Ahonen,
1995) and difficulties inhibiting the retrieval of
irrelevant associations (Barrouillet, Fayol & Lathu-
lière, 1997). Robinson, Menchetti, and Torgesen
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(2002) have maintained that weakly consolidated
number sense contributes to fact-retrieval, or fluency,
deficits in children with MD. However, number
sense is a general construct that encompasses several
cognitive areas (e.g., Dowker, 1998). And the
relatively strong performance of children with MD
only in problem solving and in using counting
procedures suggests that at least some elements of
number sense are intact in this population. Children
with MD only and MD–RD, however, did not differ
significantly on approximate arithmetic in the pre-
sent study, which required them to estimate answers
to addition and subtraction problems. Weaknesses in
spatial representations related to numerical magni-
tudes (rather than weaknesses in verbal representa-
tions) may underlie rapid fact-retrieval deficits.
When solving approximate arithmetic (or estimation)
problems the child must form a ‘‘mental number
line’’ to manipulate and estimate quantities (De-
haene & Cohen, 1991). Neuropsychological studies
indicate that estimation of quantities involves visual-
spatial abilities that are independent of language
(Dehaene & Cohen, 1991; Dehaene et al., 1999).
Before learning conventional arithmetic combina-
tions, normally developing children are proficient in
estimating set sizes and using numerical reference
points (Baroody & Gatzke, 1991). Whether very early
deficits in numerical estimation are a marker for later
mathematics difficulties should be investigated.

It is interesting that growth on approximate
calculation was relatively flat across achievement
groups, indicating that this task was hard for all
children (although all groups performed above the
chance level of 50%). The relatively low reliability
estimate for approximate arithmetic also reflects its
difficulty level. Estimation skills may receive little
emphasis in school. In fact, research with college
students reveals they are better at performing exact
calculations than at estimating answers (Hanson &
Hogan, 2000).

In terms of base-ten concepts (i.e., written
computation and place value), there were no
achievement-group differences at the end of third
grade when we accounted for predictors in our
model. Before we added predictors to the model,
however, the MD–RD group performed worse than
both the RD only and the NA groups on place value
and worse than the NA group on written computa-
tion. The findings are in keeping with what Hanich
et al. (2001) observed in second grade. The present
study shows that knowing a child’s IQ and gender
add more to our understanding of group differences
in these tasks than knowing only the group
differences.

It is not surprising that knowing a child’s IQ
level is important for predicting performance on all
of the mathematics tasks, beyond the influences of
minority status and income level. (However, on five
of the seven tasks, IQ added little information beyond
our initial achievement-group classification.) Addi-
tionally, boys had a small but significant advantage
over girls in tasks assessing place value and estima-
tion, and they used their fingers less than girls on
exact calculation of arithmetic combinations. Our
gender findings are consistent with previous work
showing few differences between third-grade boys
and girls in mathematical competencies, except that
girls use more concrete strategies than do boys when
solving number combinations (Fennema, Carpenter,
Jacobs, Franke & Levi, 1998). Mental computational
strategies are closely related to computational esti-
mation ability and are needed to develop a full
understanding of place value (Sowder, 1998).

In conclusion, the results of the present study,
together with earlier findings, suggest that deficien-
cies in fact retrieval, and by extension calculation
fluency, are a defining feature of mathematics
difficulties, specific or otherwise. However, we do
not fully understand the impact of instructional
intervention on the development of mathematical
competencies in children with MD. In primary
school most interventions are targeted at mathe-
matics difficulties rather than at reading difficulties
(Jordan et al., 2002). Although it is tempting to
suggest that children with MD onlyFwho have a
greater range of competencies than do children with
MD–RDFbypass their relatively circumscribed de-
ficiencies in number fact mastery with calculators or
other aids, it may be wiser to provide instruction
aimed at fostering calculation fluency, in addition to
methods that emphasize problem solving. Studies
on the maintenance of mathematical competencies in
adults indicate that the degree of extended rehearsal
and practice provided during the school years is the
best predictor of performance levels in adulthood
(Bahrick & Hall, 1991). The extent to which the skill
and growth trajectories of kindergarten and first-
grade children in math and reading precursors
predict later mathematics difficulties in second
grade and beyond remains an open yet important
question.
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Appendix

In this appendix, we provide a brief didactic
discussion of the method of growth-curve modeling.
For a more detailed overview of growth-curve
modeling, see Raudenbush and Bryk (2002), and
for an application to research in MD, see Jordan et al.
(2002). Briefly, growth-curve models can be viewed
as falling within the class of multilevel linear models
(i.e., multilevel linear models; Raudenbush & Bryk,
2002) where Level 1 represents intra-individual
differences in status and growth rate and Level 2
represents interindividual differences in status and
growth rate. Consider a simple growth model for
any one of the mathematics tasks for person p at time
i, which we denote here as MATHip. We write the
Level 1 equation expressing the math task scores
over time within an individual as

MATHip ¼ p0p þ p1pti þ eip; ðA1Þ

where p0p represents the math task score for person p
at time t5 0. For this study, the reference point at
t5 0 (so-called status point) will be the last wave of
testing. Continuing, ti represents a temporal dimen-
sion that is assumed to be the same for all
individuals. In our study, the temporal dimension
is months, with students measured in January, April,
November, and May. Note that although these
testing dates represent unequal time intervals, this
presents no difficulty for the estimation of growth-
curve models. The parameter p1p represents the
linear growth rate over the 16 months of testing.
Finally, eip is the error term in the Level 1 equation
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representing the influence of omitted variables for
student p at time i.

The simple linear growth-curve model in Equa-
tion A1 can be extended to incorporate a quadratic
trend (acceleration) in the growth trajectory. To do
so, Equation A1 is rewritten as

MATHip ¼ p0p þ p1pti þ p2pt2i þ eip; ðA2Þ
where p2p is the acceleration rate.

A major benefit of growth-curve modeling is that
it can be extended to handle predictors of individual
differences in the growth parameters (ending status,
linear growth rate, and acceleration rate). In the case
of Equation A2, three models are specified: one for
the end of testing status parameter, one for the linear
growth rate parameter, and one for the acceleration
parameter. Predictors of the growth parameters are
referred to as time-invariant predictors. In our study,
achievement-group membership, gender (male5 1),
ethnicity (minority5 1), income level (low in-
come5 1), and IQ centered on the sample mean
were used as time-invariant predictors.

In our study, the time-invariant predictors of
major interest were group membership and the
remaining predictors are used as controls. Because
achievement-group membership was dummy coded
with MD–RD serving as the reference group, three
dummy-coded vectors were specified. Thus, the
Level 2 model for the exit status, growth rate, and
acceleration, can be written as

p0p ¼ mES þg1;ES ðNAÞp þg2;ES ðRD onlyÞp

þ g3;ESðMD onlyÞp þg4;ESðMALEÞp

þ g5;ESðETHNICITYÞp

þ g6;ESðINCOMEÞp þ g7;ESðIQÞp þ z0p;

ðA3Þ

p1p ¼ mGR þg1;GR ðNAÞp þg2;GR ðRD onlyÞp

þ g3;GRðMD onlyÞp þg4;GRðMALEÞp

þ g5;GRðETHNICITYÞp

þ g6;GRðINCOMEÞp þ g7;GRðIQÞp þ z1p;

ðA4Þ

and

p2p ¼ mAC þg1;AC ðNAÞp þg2;AC ðRD onlyÞp

þ g3;ACðMD onlyÞp g4;ACðMALEÞp

þ g5;ACðETHNICITYÞp

þ g6;ACðINCOMEÞp þ g7;ACðIQÞp þ z2p;

ðA5Þ

where mES, mGR, and mAC are intercept parameters
representing mean growth parameters for White
female MD–RD students with IQ scores at the mean
of the sample. (Note that this interpretation of the
intercept is arbitrary, depending only on the coding
of the variables.) The parameters g1, g2, and g3 give
the mean differences in the growth parameters
between the specific achievement groups and the
MD–RD group, holding constant gender, ethnicity,
income, and IQ; the coefficient g4 gives the mean
difference between boys and girls on the growth
parameters, holding constant achievement-group
membership, ethnicity, income, and IQ; the coeffi-
cient g5 gives the mean difference between minority
and nonminority students on the growth para-
meters, holding constant achievement-group mem-
bership, gender, income, and IQ; the coefficient g6
gives the mean difference between low-income and
middle-income students on the growth parameters,
holding constant achievement-group membership,
gender, ethnicity, and IQ; and the coefficient g7 gves
the effect of IQ on the growth parameters, holding
constant achievement-group membership, gender,
ethnicity, and income. The zs are error terms
containing the effects of omitted variables in their
respective equations. The derivations of these para-
meters are discussed in detail elsewhere (e.g., Bryk
& Raudenbush, 1992).

Research by Muthén (1991) and Willett and Sayer
(1994) has shown how the models in Equations A1
through A5 can be incorporated into a structural
equation modeling framework (see also Kaplan,
2000). For this paper, we used the structural equation
modeling framework, employing the software pro-
gram AMOS (Arbuckle, 1999).
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