Notes:

There are 10 pages on this exam - please check.

TRAL KEY

The point value of questions varies widely - take note

Please make your answers brief and to the point

Please write LEGIBLY.

The course grade is "curved"

Good luck

Question 1 (17 pts.) Refer to the graph at the right in conjunction with the conditions shown to the left to answer the following questions.

A concentration of 0.01 µM chymotrypsin was added to 1 mL of phosphate buffer pH 7.8, containing 100 μM of the following thioester:

Explain the shape and amplitude of the curve.

This is convenien of S => two products. This is not a burst phase because of non correspondence of burst amplitude (100, 14 vs. 01, 14 M)

b. Calculate an approximate turnover number for this substrate in units of turnover/min.

represents an initial rate of 46 µM/min

Enz carc = 'Olym

SO TN = 46 pM/mi- = (4600/min

- Draw on the graph what would happen if an additional 50 µM of c. substrate is added at 5 minutes.
- Is the Km for the ester likely to be much less than, or d. nsiderably more than

MORE

CANNOT PREDICT

xplain your answer

If it was < Jul then it would remain at same vate almost until substrate depletion ... |

e. Draw the time-line representation of one catalytic turnover of chymotrypsin with this substrate clearly showing the structures of EACH substrate and product

- f. Identify the slow step in catalysis on your diagram.
- g. Chymotrypsin incubated with this substrate is protected against the action of di-isopropyl-fluorophosphate. Explain clearly why.

<u>Question 2 (12 pts)</u> Each of the following enzymes are only active in the ionic form shown. Draw clear and accurate Vmax versus pH curves.

Question 3 (12pts) Consider the following proteins.

protein	MW (daltons)	pI	
A B	78,000 158,000	7	
c	58,000	3	
D	20,000	5	
E	29,000	6	

a.	What is the order of elution of A-E on gel-filtration	
FIR	ST LAST	C
b.	CIRCLE which proteins you expect would stick to an anic exchange column at pH 5.5?	חכ
	\mathbf{A}	
c.	CIRCLE which proteins you expect would stick to a catic exchange column at pH 6.5?)T
	f A	

d. Protein E when stored in buffer at 4 C for a long period coeluted with protein C on gel filtration. Explain why this might happen. e. SDS polyacrylamide gel electrophoresis of protein B in the presence and absence of β -mercaptoethanol are shown below. Sketch a likely quaternary structure for the protein.

<u>Question 4 (9 pts)</u> What is the effect of the following on hemoglobin and myoglobin. Circle the most appropriate answer (NC = no change).

Decreasing pH on the oxygen affinity of normal hemoglobin	increase	NC	decrease
Decreasing pH on the oxygen affinity of sickle cell hemoglobin	increase	NC	decrease
Increasing the pH on DPG binding in hemoglobin	increase	NC	decrease
Increasing the pH on CO ₂ binding to hemoglobin	increase	NC	decrease
Increasing the pH on CO binding to hemoglobin	increase	NC	decrease
Increasing the CO ₂ concentration on the oxygen binding of myoglobin	increase	NC	decrease
The effect of low concentrations of CO on the oxygen affinity of hemoglobin	increase	NC	decrease
The effect of CO ₂ on the oxygen affinity of hemoglobin	increase	NC	decrease
The effect of oxygen on the pH of an unbuffered solution of deoxyhemoglobin	increase	NC	decrease

Question 5 (21 pts) Quick problems. Most of the credit goes to the correct numerical answer.

If a monomeric oxygen binding protein has a K, value of 30 mm of mercury (torr) what is the fractional saturation at a partial pressure of 15 torr?

							*	
F:	rac	ctio	nal	sa	tura	ti	on	

A 1,000,000-fold increase in a reaction rate corresponds to what change in the standard free energy of activation? R = 2 $cal/^{\circ}$; T = 300°K.

An enzyme shows a maximal rate of 25 umol/min. What substrate concentration will yield a rate of 15 umol/min if the Km is 9

$$v = \frac{k_{-1}(S)}{k_{-1}(S)}$$

$$V = \frac{15}{15} = \frac{25[S]}{15(9+5)} = \frac{25S}{15(9+5)} = \frac{25S}{15(9+5)}$$

 $S = \frac{13.5mm}{15}$

$$[s] = 13.5 \text{ nM}$$

If a competitive inhibitor I $(K_i = 3 \text{ mM})$ is added at a concentration of 27 mM to the enzyme in "c" what rate will be observed with 20 mM substrate?

$$V = \frac{25 \cdot 20}{90 + 20}$$

Rate =
$$\frac{4.5 \, \mu \text{mol/m}}{}$$

e. Calculate the free energy change for the attack of water (hydrolysis) on acetyl-P. Given:

ATP + Acetate = ADP + Acetyl-P
$$\Delta G^{o'}$$
 = +3.3 kcal

ATP +
$$H_2O$$
 = ADP + P_1 $\Delta G^{\circ'} = -7.3$ kcal

(autyl-P + tho
$$\rightarrow$$
 author +Pi)
autyl P + The \rightarrow AttP + author -3.3 kcal
AttP + 400 \rightarrow App+P, -7.3
autytP + 140 \rightarrow author +P. -10.6 k carl

f. In this reaction: A = B + C

The standard free energy change is +6 Kcal. Calculate the free energy change if A were 10^{-1} M and B and C were 10^{-4} M. [R=2 cal/mole/°K; temperature = 37° C]

g. If the concentration of B and C were maintained at 10⁻⁴ M in question "f" above, what would the concentration of the reactant A need to become for the reaction to be at equilibrium?

$$\Delta G^{0/} = -RT \ln K_{eq} \quad \text{co} \quad K_{eq} = 6.28 \times 10^{-5} (M)$$

$$6-28\times10^{5} M = \frac{10^{-4}\times10^{-4}}{\Sigma A I}$$

$$A = \frac{10^{-8}}{6.28 \times 10^{5}}$$

Question 6 (3 pts) Which statement is most appropriate?

- a. Transition state analogues are likely to be competitive inhibitors of an enzyme catalyzed reaction.
- b. In Michaelis-Menten kinetics, the rate of conversion of S to P and P to S are equal in the steady state.
- c. The slowest step of an enzyme catalyzed reaction is always the diffusion of substrate into the active site.
- d. The more tightly a product is bound the higher the Vmax.
- e. All of the above are false.

<u>Ouestion 7 (3 pts)</u> Which of the following statements concerning aspartate transcarbamylase is false?

- a. The enzyme normally shows sigmoidal kinetics with aspartate as the varied substrate.
- b. CTP binds to the regulatory subunit.
- c. ATP binds to the catalytic subunit.
- d. Catalytic trimers have enzyme activity.
- e. p-OH-mercuribenzoate treatment does not abolish enzyme activity.

Question 8 (3 pts) Which is the most appropriate answer?

- a. Spontaneous reactions are always exothermic
- b. Spontaneous reactions are never endothermic
- c. Spontaneous reactions always involve an increase in entropy
- d. Spontaneous reactions are never exergonic
- e. All of the above are false.

<u>Question 9 (5 pts)</u> The following hypothetical enzyme exists as an equilibrium between inactive monomers and active trimers. Monomers and trimers have the properties listed below:

	Trimer	Monomer			
	Active	Inactive			
	Binds L strongly	Binds L v	veakly	en e	-
	pK of exposed HIS is 8	pK of exp	osed	HIS is 6	
Cir	cle what will be the effect of incre	easing	. on	• • • • •	
a.	L concentration on enzyme activity	Increase	N.C.	Decrease	
b.	pH on the concentration of trimer	Increase	N.C.	Decrease	
c.	[Enzyme] on percentage of monomer	Increase	N.C.	Decrease	
d.	L concentration on % monomer	Increase	N.C.	Decrease	
e.	[H ⁺] on L binding	Increase	N.C.	Decrease	
<u>Oue</u> wor	<u>stion 10 (pts)</u> Fill in the blanks w ds.	ith not mo	re th	an three	legibl
a.	Inactive precursors of proteolytic	enzymes			
b.	Inhibitors which affect Km and Vma termed	x are	· · · · · · · · · · · · · · · · · · ·		
c.	Enzyme kinetics in which the enzyme alternates between two covalent states				
d.	A spectrophotometric method for strapid reactions in enzymology	udying			·
e.	Sickle cell trait confers resistand disease	ce to what			

The increase in solubility of a protein with increasing ionic strength is called

f.

g.	Name a serine protease with no sequence similarity with chymotrypsin	***************************************	
h-j.	In the enzyme named in g list three catalytically essential amino acids in its active site	,	
k.	Another name for mechanism-based inhibition		
1.	A separation method based on pI		
m.	One method routinely used to disrupt cells	•	

z.

The word that best describes this exam

