YOUR NAME:

NOTES:

- 1. where appropriate please show work if in doubt show it anyway.
- 2. pace yourself you may want to do the easier questions first.
- 3. please note the point value of questions adjust your answers and effort accordingly.
- 4. some questions may have more data than you need.
- 5. please be brief unfocused, rambling answers won't receive as much credit as a few short appropriate phrases.
- 6. Please write CLEARLY if I cannot read it it is wrong.
- 7. Good luck

3ea	2 for	corol	answer
	А	***	

Question 1. (21 pts.) Short problems. Show work, but most credit goes to the correct

numerical answer.

a. the pH of a solution is 4.7. What is the hydroxide concentration?

$$PH = -10^{-4.7}$$

$$H^{+} = 10^{-4.7}$$

$$OH^{-} = \frac{10^{-14}}{10^{-4}7}$$

$$[OH] = \frac{5.01 \times 10^{-10}}{5 \times 10^{-10}}$$

- 0.5 mmel of HCI remarkell (in IL)
- c. You add 0.5 mmol of formic acid (pK = 3.70) in 250 mL of water to 20 mmol of lithium formate in 250 mL of water. What is the new pH? $pH = \frac{5 \cdot 3}{1}$

e. A solution of 0.2 moles of lactic acid in 2 L of water showed a pH of 2.4. What is the pK of lactic acid.

f. If you add 0.1 moles of sodium hydroxide to a solution of 0.25 moles of acetic acid (pK=4.7) in 1 L what is the resulting pH?

e. Name and draw a specific chemical reagent you might use to convert the dimer back to monomers

pH = 1(2 - 4)

iodo	auti	acrel
iodoac	etate	

 f. What reagent could be used to permanently stop glutathione forming disulfides

g. Draw the chemistry involved in your answer in "f":

Question 3. (7 pts.) write out the 3 letter amino acid abbreviations for the sequence

a. What is the chance that the sequence -MARY- would appear in any 4 adjacent amino acid residues in a protein?

b. If each amino acid had 4 possible pairs of phi/psi angles, how many possible combinations of the 3 dimensional shape of this peptide exist?

(i)
$$4 \times 4 \times 4 \times 4$$
 Combinations = 256

Question 4. (6 pts) Draw the tripeptide ASP-PHE-LYS in the form that predominates at pH 5. Assume the following pK values terminal amino and carboxyl 10 and 2 respectively, side chain carboxyl 4 and amino group 11.

1

What happens to the pK of the amino group if cocaine goes from water into a hydrophobic solvent? Circle one answer:

It remains the same

it increases

it decreases

cannot predict

Hydrolysis of the ester linkage shown by the arrow in the diagram generates an acid derivative with a pK of 3.0. The new rate of absorption of the derivative would be __ than cocaine at the same pH:

At pH = 3:

faster

slower

unchanged (circle)

At pH = 5:

faster

slower

unchanged

At pH = 8:

faster

slower

unchanged

Question 7. (14 pts) the following domains are found in the enzyme pyruvate kinase:

- a. In domain 1 clearly label the N and C termini.
- b. In domain 3 draw a short stretch of the two adjacent polypeptide chains labeled X and Y. Use R-to represent the side chains, but otherwise include all atoms in your drawing. Clearly indicate the H-bonds stabilizing this secondary structure.

X and Y/are part of what type of structure?

B-Structure Number: 10~12 (10.8)

How many amino acids would you expect in the boxed in area of domain 3 (3×3.6)

6

Which amino acid would you least expect in the middle of this section

Name the structural element circled in domain 3

TURN

Domain 2 has many lysine and arginine residues - but it is not attacked by trypsin treatment. Suggest a reason why. WELL FOLDED to prevent

Trypsin from accessing - (ARG/LYS) - X -

Question 8. (7 pts.) From the following 8 peptides (A-H) select a single letter for each question. You may use letters more than once.

A TRP-LEU-LYS

B LYS-THR-GLY

C GLU-CYS-MET

D GLU-ASP-ARG

E ALA-LYS-ARG

F PHE-THR-GLU

G PHE-ARG-PRO

H MET-PHE-LEU

Which peptide has the largest absorbance at 280 nm

Which peptide is the most positively charged at pH 6

Which peptide has approximately no charge at pH 6

Which peptide could be fragmented by CNBr (cyanogen bromide)

A peptide resistant to trypsin and chymotrypsisn

The most polar peptide at pH 7

This peptide tends to dimerize on standing

Question 9. (6 pts) Using the table, answer the following. None of the protein contained disulfide bonds

Protein	overall molecular weight	pl	# subunits
A	45,000	4	2
В	90,000	3	1
C	15,000	9	1
D	160,000	7	4

- a. the protein sticking tightest to a positively charged resin at pH 8
- b. the protein sticking tightest to a negatively charged resin at pH 7
- c. The protein running slowest on SDS-PAGE
- d. The protein with the largest proportion of (ASP + GLU) compared to (LYS + ARG)
- e. The protein that emerges slowest on gel filtration
- f. The protein that comes out first on gel filtration

BUBBCA

Question 10 (pts.) Fill in the blanks with not more than 3 legible words.				
a.	these catalysts aid folding of large proteins	FOLDASEJ Chaperones		
b.	the amino acid obligatorily present at every 3 rd position in collagen	GLY		
c.	A shell of ordered water around an organic molecule is called	CLATITEATE		
d.	Plots of the frequency of phi/psi angles in proteins are called	RAMACUANIDIRANI PUL		
e.	An example of a protein toxin	BOTULINUM RICIN		
f.	A vitamin required for collagen maturation	VITC / ASCORBLE		
g	A method for determining 3D structure without crystals	NMR		
h	. The name of the most commonly used protein sequencing method	SA EDMAN		
7	the word that best describes this exam	Me		

the end