CHEM 527

FIRST EXAM FALL 2002

YOUR NAME:	

NOTES:

- 1. where appropriate please show work if in doubt show it anyway.
- 2. pace yourself you may want to do the easier questions first.
- 3. please note the point value of questions adjust your answers and effort accordingly.
- 4. some questions may have more data than you need.
- 5. please be brief unfocused, rambling answers won't receive as much credit as a few short appropriate phrases.
- 6. Please write CLEARLY if I cannot read it it is wrong.
- 7. Good luck

Question 1. (21 pts.) Short problems. Show work, but most credit goes to the correct numerical answer.

a. the pH of a solution is 4.7. What is the hydroxide concentration?

[OH⁻] = _____M

b. You mix 300 mL of 10 mM KOH with 700 mL of 5 mM HCl. What is the pH of the mixture?

pH = _____

c. You add 0.5 mmol of formic acid (pK = 3.70) in 250 mL of water to 20 mmol of lithium formate in 250 mL of water. What is the new pH?

pH = _____

d. In part "c" calculate the pH of the 250 mL of formic acid before the lithium formate was added.

pH = _____

e. A solution of 0.2 moles of lactic acid in 2 L of water showed a pH of 2.4. What is the pK of lactic acid.

pK =_____

f. If you add 0.1 moles of sodium hydroxide to a solution of 0.25 moles of acetic acid (pK=4.7) in 1 L what is the resulting pH?

pH =_____

g.	Human insulin contains 3 disulfide bonds and no free cysteine side chains.	How many
	possible combinations of disulfide bridged insulin molecules exist?	

Number = _____

- a. What is unusual about its structure?
- b. Assume pK of 9.5 for the amino group, 8.5 for the -SH group and 3 for the carboxyl groups give the net electrical charge on glutathione at

c. You have 0.3 moles of glutathione as shown above. How much KOH needed to get to:

d. Two molecules of glutathione can form a disulfide-linked dimeric molecule. What is the charge on the dimer at the following pH values:

Name and draw a specific chemical reagent you might use to convert the dimer back to monomers

3

f.	What reagent could be used to permanently stop glutathione forming disulfides
g.	Draw the chemistry involved in your answer in "f":
Qı	uestion 3. (7 pts.) write out the 3 letter amino acid abbreviations for the sequence
	-MARY-:
a.	What is the chance that the sequence -MARY- would appear in any 4 adjacent amino acid residues in a protein?
	Answer =
þ	. If each amino acid had 4 possible pairs of phi/psi angles, how many possible combinations of the 3 dimensional shape of this peptide exist?
	Combinations =
Ç	Question 4. (6 pts) Draw the tripeptide ASP-PHE-LYS in the form that predominates at pH 5. Assume the following pK values terminal amino and carboxyl 10 and 2 respectively, side chain

Question 5. (8 pts) Tyrosine is shown to the left. At the right draw a clear titration curve of tyrosine. CLARITY and ACCURACY rewarded.

OH (10.2)

CH2

CH2

NH
$$\frac{1}{8}$$
 - C - $\frac{1}{6}$ - O-H

(9.2) H

(9.2) H

The listed amounts of KOH were added to 0.2 moles of tyrosine in the form shown. Show what pH would result.

0.5 moles _____; 0.2 moles _____; 0.1 moles _____; 0.3 moles _____

Question 6. (7 pts.) Cocaine hydrochloride is shown to the right and has a pK of 5.6. Cocaine is dissolved in buffers of pH 3, 5 and 8.

Which would provide the faster absorption into a biological membrane?

pH = _____

Which pH (3, 5 or 8) would you expect cocaine to be most soluble?

pH = _____

What happens to the pK of the amino group if cocaine goes from water into a hydrophobic solvent? Circle one answer:

It remains the same

it increases

it decreases

cannot predict

Hydrolysis of the ester linkage shown by the arrow in the diagram generates an acid derivative with a pK of 3.0. The new rate of absorption of the derivative would be __ than cocaine at the same pH:

At pH = 3:

faster

slower

unchanged (circle)

At pH = 5:

faster

slower

unchanged

At pH = 8:

faster

slower

unchanged

Question 7. (14 pts) the following domains are found in the enzyme pyruvate kinase:

- a. In domain 1 clearly label the N and C termini.
- b. In domain 3 draw a short stretch of the two adjacent polypeptide chains labeled X and Y. Use R-to represent the side chains, but otherwise include all atoms in your drawing. Clearly indicate the H-bonds stabilizing this secondary structure.

(dowain3) X and Yare part of what type of structure?	
How many amino acids would you expect in the boxed in area of domain 3	Number:
Which amino acid would you least expect in the middle of this section	
Name the structural element circled in domain 3	

Domain 2 has many lysine and arginine residues - but it is not attacked by trypsin treatment. Suggest a reason why.

Question 8. (7 pts.) From the following 8 peptides (A-H) select a single letter for each question. You may use letters more than once.

A TRP-LEU-LYS	B LYS-THR-GLY	C GLU-CYS-MET	D GLU-ASP-ARG
E ALA-LYS-ARG	F PHE-THR-GLU	G PHE-ARG-PRO	H MET-PHE-LEU
Which peptide has the	largest absorbance at 28	0 nm	<u></u>
Which peptide is the n	nost positively charged at	pH 6	
Which peptide has app	proximately no charge at	pH 6	
Which peptide could b	e fragmented by CNBr (c	yanogen bromide)	
A peptide resistant to	trypsin and chymotrypsis	n	
The most polar peptid	le at pH 7		
This peptide tends to	dimerize on standing		~

Question 9. (6 pts) Using the table, answer the following. None of the protein contained disulfide bonds

Protein	overall molecular weight	pl	# subunits
A	45,000	4	2
В	90,000	3	1
С	15,000	9	1
D	160,000	7	4

D	160,000 / 4	
a.	the protein sticking tightest to a positively charged resin at pH 8	
b.	the protein sticking tightest to a negatively charged resin at pH 7	
c.	The protein running slowest on SDS-PAGE	
d.	The protein with the largest proportion of (ASP + GLU) compared to (LYS + ARG)	
e.	The protein that emerges slowest on gel filtration	
f	The protein that comes out first on gel filtration	

Question 10 (pts.) Fill in the blanks with not more than 3 legible words.		
a.	these catalysts aid folding of large proteins	
b.	the amino acid obligatorily present at every 3 rd position in collagen	
c.	A shell of ordered water around an organic molecule is called	
d.	Plots of the frequency of phi/psi angles in proteins are called	
e.	An example of a protein toxin	
f.	A vitamin required for collagen maturation	
g.	A method for determining 3D structure without crystals	
h	. The name of the most commonly used protein sequencing method	
Z	z. the word that best describes this exam	

the end