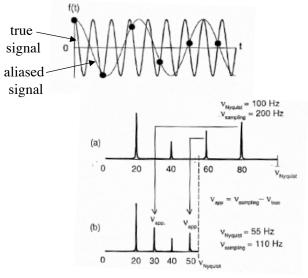
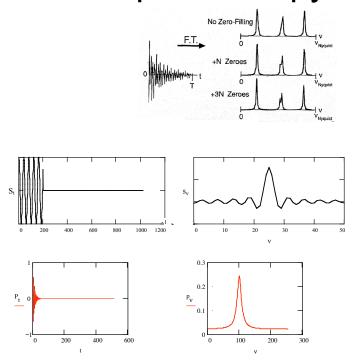
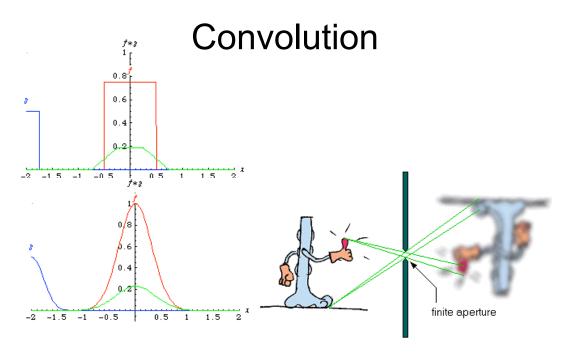

FT Spectroscopy



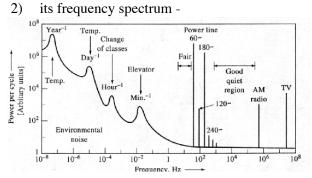
Fourier relations hold for discrete waveforms via series rather than integrals


$$\begin{split} \bar{f}(\omega_m) &= \sum_{n=0}^{N-1} f(t_n) \exp(-i\,\omega_m t_n) \\ f(t_n) &= \sum_{m=-(N/2-1)}^{N/2-1} \bar{f}(\omega_m) \exp(i\,\omega_m t_n) \end{split} \quad F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & i \end{bmatrix}$$


FT Spectroscopy

The discrete FT is accurate if highest constituent frequency of our signal f(t), ω_{max} , is sampled twice per cycle. If this <u>Nyquist criterion</u> is not met, the sampled waveform does not reflect ω_{max} .

FT Spectroscopy


http://mathworld.wolfram.com/Convolution.html http://www.vias.org/tmdatanaleng/cc_convolution.html

Noise

Noise are random fluctuations superimposed on the analytical signal. Noise is characterized by

1) its magnitude -

In the simplest settings (no background signal)

Skoog, Nieman, Holler, Principles of Instrumental Analysis, 1998, 5th Ed.

Noise

Noise are random fluctuations superimposed on the analytical signal. Noise also is characterized by

3) Its source -

Rem: variances are additive. So each noise source can be further analyzed.

Fundamental noise arises from the particle nature of EMR & matter. Fundamental noise can never be totally eliminated; often independent of signal. Non-fundamental noise arises from imperfect instrument components and conditions. Can be eliminated (at least in principle). Usually proportional to signal.

$$\sigma_{signal}^{2} = (\sigma_{signal}^{2})_{shot} + (\sigma_{signal}^{2})_{flicker}$$

$$\sigma_{background}^{2} = (\sigma_{backgr}^{2})_{shot} + (\sigma_{backgr}^{2})_{flicker}$$

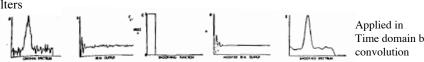
$$\sigma_{dark}^{2} = (\sigma_{dark}^{2})_{shot} + \sigma_{xs}^{2} + \sigma_{amp}^{2}$$

Shot: fundamental noise observed at current interfaces due to random nature of photon emission/arrival

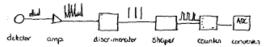
Flicker: signal dependent non-fundamental noise

R/O: fundamental & NF noise in readout circuitry; includes shot, flicker(impurities) & quantization noise due to limited read-out resolution

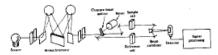
 $\frac{S}{N} = \frac{E_s}{\sqrt{\left(\sigma_s^2\right)_s + \left(\sigma_s^2\right)_f + \left(\sigma_b^2\right)_s + \left(\sigma_b^2\right)_f + \left(\sigma_d^2\right)_s \sigma_{xs}^2 + \sigma_{amp}^2}}$


Signal to Noise Enhancement

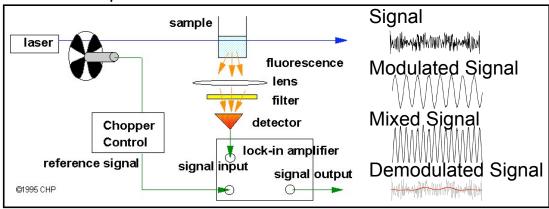
2. Analog filters


$$v_o = v_i \left(\frac{iX_c}{\sqrt{i^2 R^2 + i^2 X_c^2}} \right)$$
Low pass filter

$$v_o = v_i \left(\frac{iR}{\sqrt{i^2 R^2 + i^2 X_c^2}} \right)$$
High pass filter


3. Digital filters

4. Photon counting



5. Double-beam spectrometers

Signal to Noise Enhancement

Lock-in Amplifiers (LIA)

www.chemistry.adelaide.edu.au/.../ lock-in.png

LIAs use <u>phase-sensitive detection</u> to isolate the signal component at a specific reference frequency AND phase (imposed by the experimenter). This eliminates signals (noise) at frequencies other than the reference frequency so that they do not affect the measurement.