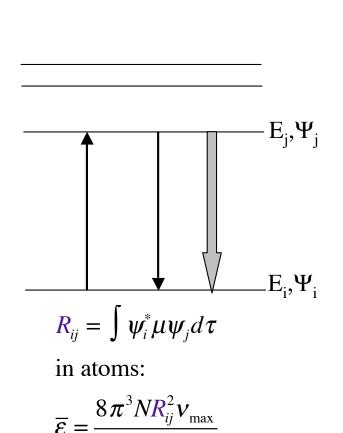
Light in Matter

The electric field distorts the charge distribution in the dielectric by generating dipoles that transiently increase the total E field in the medium. The medium is polarized by the light. The degree of polarization depends on the material and E_0

$$P = (\varepsilon - \varepsilon_0)E = \varepsilon_0 \chi E = \varepsilon_0 (n^2 - 1)E = \alpha E$$

χ: susceptibilty


α: polarizability

The incident radiation induces a small vibration in the electron cloud that oscillates with the EMR, so the electrons behave like a forced (driven) oscillator:

Light-Matter Interactions

What happens when photons encounter matter?

QM: If photon E (hv) is equal to ΔE between states -

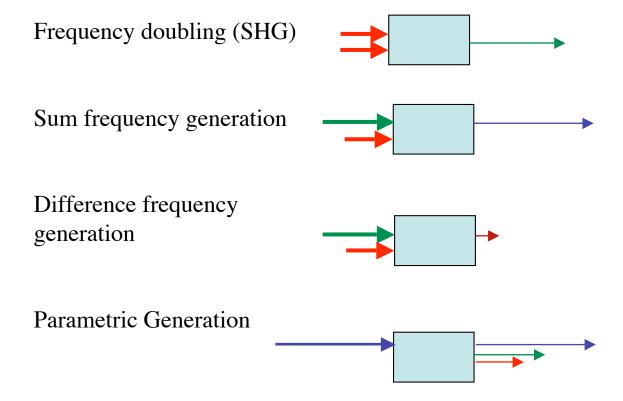
	1	
X-rays		
UV		
Visible		
VISIDIC		
IR		
II X		
μ&		
radio		
waves		

Non-linear Processes

$$\vec{P} = \varepsilon_0 \chi^{(1)} \vec{E} + \varepsilon_0 \chi^{(2)} \vec{E} \vec{E} + \varepsilon_0 \chi^{(3)} \vec{E} \vec{E} \vec{E} + \dots$$

Intense beams induced higher order interactions in anisotropic materials. SHG requires crystals such as KH₂PO₄ (KDP), NH₄H₂PO₄ (ADP), BBO

2nd order spectroscopy:


3nd order spectroscopy:

Frequency Mixing

$$\vec{P} = \varepsilon_0 \chi^{(1)} \vec{E} + \varepsilon_0 \chi^{(2)} \vec{E} \vec{E} + \varepsilon_0 \chi^{(3)} \vec{E} \vec{E} \vec{E} \vec{E} + \dots$$

Intense beams induce higher order interactions in anisotropic materials. SFG/DFG are generalizations of SHG; require crystals such as KH₂PO₄ (KDP), NH₄H₂PO₄ (ADP), BBO

Non-linear Processes

The optical polarization, P, measures the coupling of the radiation field to the material

$$\mathbf{k}_{s} = \pm \mathbf{k}_{1} \pm \mathbf{k}_{2} \pm \mathbf{k}_{3} \dots \pm \mathbf{k}_{n}$$
$$\boldsymbol{\omega}_{s} = \pm \boldsymbol{\omega}_{1} \pm \boldsymbol{\omega}_{2} \pm \boldsymbol{\omega}_{3} \dots \pm \boldsymbol{\omega}_{n}$$

n	Class	Examples	Phase Conditions
1	Two-wave mixing:		
2	Three- wave mixing		
3	Four-wave mixing		