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8. Fourier transform spectroscopy 

Michelson interferometer (revisited) 
 
In a previous section, Michelson interferometer was described as a tool for 

determining wavelengths accurately.  A closer look at the behavior of this device shows 
that the entire spectrum emitted by a polychromatic source (or transmitted by a sample) 
can be measured accurately and quickly from its output.  The Michelson interferometer 
is used in virtually every modern infrared spectrometer.   

The electric field exiting the Michelson interferometer is the sum of the electric 
fields that passed through the two (fixed and moving) arms of the device, here 
described as cosine waves of wavevector, k, 
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where z1 and z2 are the paths through the arm 1 and arm 2, respectively.  One way to 
write the irradiance, E, is as the time-averaged square of the electric field (scaled by the 
appropriate constants). 
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The irradiance (intensity in many circles) is the signal that would be recorded at a 
detector or observed by your eye.  The physical interpretation of the above equation is 
that detectors cannot respond as fast as the oscillations of a light wave, so they time 
average (integrate) the signal over the period τ, the detector response time.  The sign of 
the electric field is also not detected; E is squared.  The “intensity” output of the 
interferometer can now be derived. 
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By algebra and trigonometry,  
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The rapidly oscillating terms (those containing ω) vanish because sinusoids always 
average to zero when τ>2π/ω.  The intensity output is thus a cosine wave that oscillates 
with the path difference Δz.  We can define E0≡cε0

2E0 and rewrite this expression to 
emphasize that the intensity is a function only of Δz. 
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The function is plotted to the right.  Since intensity 
cannot be negative, it makes sense that the cosine 
wave is offset by one.  The Michelson interferometer 
has effectively reduced the oscillation frequency of the 
light signal (around 1014 Hz) to an arbitrarily low 
frequency that determined by the velocity of the 
mirror.  k/2π is the frequency in wavenumbers, which 
are the units typically used in infrared spectroscopy. 

The equation for E(Δz) given above applies to 
a single frequency beam of wavevector k.  In an 
interesting spectrum there are multiple frequencies 
(and therefore, wavevectors).  Intensities are additive, 
therefore, E(Δz) is a sum over all wavevectors, k. 
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This summation is a cosine Fourier series, a function whose mathematical behavior is 
well understood.  The Fourier series relates functions of conjugate variables (remember 
p (momentum) and x (position) in quantum mechanics), in this case Δz and k. I(Δz), the 
interferogram, is measured experimentally.  The spectrum is I(k), which is the intensity 
associated with each wavevector, is calculated 
from I(Δz).  The Fourier transform allows 
calculation of the spectrum, I(k), from the 
experimentally measured interferogram, I(Δz). 

To illustrate how I(Δz) (the 
interferogram) is related to the spectrum, a few 
examples are given here.  Consider first a 
spectrum that has three infinitely narrow 
frequency components at arbitrary multiples of 
k.  The interferogram, shown to the right in Fig. 
8.2a, has a periodic pattern reflecting the 
combination of three frequency components.  
The corresponding spectrum, (not plotted) 
assuming the interferogram was collected over 
a long mirror distance, has three infinitely 
narrow, unit high peaks at k1, k2, and k3.  The 
Fourier transformation, which will be detailed 
later, calculates the coefficients (1, 1, and 1) of 
the oscillations (k1, k2, and k3) needed to 
reconstruct the interferogram, I(Δz). Next, in 
Fig. 8.2b, consider a spectrum that has the 
same three frequency components, but now 
with some discernible (non-zero) bandwidth.  
The interferogram, shown to the right, now 
decays as well as oscillates.   Experimentally, 

Figure 8.1: Michelson 
interferometer output 
mirror travel 
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Interferograms 
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the interferogram is acquired by the data acquisition system until the interferogram has 
decayed to the point where the signal contains an intolerable fraction of noise.  Because 
all the frequencies in the spectrum are monitored simultaneously at all points in the 
interferogram, FT spectroscopy provides a substantial improvement in signal to noise 
ratio as long as the noise superimposed on the spectral signal is frequency 
independent.  This is called the multiplex advantage.  Similarly, the ability of the 
interferometer to analyze wavelengths without using slits to separate them leads to the 
throughput advantage.  Finally, the availability of very accurate wavelength calibration 
from the interference fringes of reference lasers improves the accuracy of the spectra 
that are measured.  These advantages motivate the broad use of interferometry in 
spectral measurements. All measurements don’t end up being improved by Fourier 
transformation, but many do.   
 

Fourier Transform Basics 
 
The Fourier transform is one of the most widely used mathematical tools in the 

physical sciences.  The Fourier transform describes the relation between fluctuating 
signals measured as a function of time (time domain) and their spectra, which reveal the 
relative amplitudes of the oscillations (frequency domain) comprising the signals.  We’ve 
seen that a Fourier transform relation exists between wavenumber and optical path 
length in the Michelson interferometer.  A Fourier transform relation between space and 
"inverse space", also is used to interpret solid state structures from x-ray diffraction 
patterns, but time-frequency are the only set of conjugate variables we will discuss here. 

Any function in the time domain can be expressed as a Fourier series, that is a 
combination (sum) of harmonic oscillations: 
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where T is the acquisition time of the signal.  The time domain signal is represented as 
a function f(t); it is sometimes called a waveform.  The cosine Fourier transform of f(t) 
is
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Fourier transform of f(t) is
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S
(! ) .  If the waveform is represented as a combination of 

cosines and sines (remember that eiωt = cos(ωt)+isin(ωt)), f(t) is the inverse complex 
transform of

 
F̂(! ) .  The complex transform will be discussed here and in the next 

section.  Each f(t) and 
 
F̂(! )  combination (cosine, sine or complex) is called a Fourier 

transform pair.  (Plain variables represent time domain functions and capped variables 
represent frequency domain functions.) In the complex case, the inverse transform is 
algebraically simple and the waveform has a simple form in terms of the transform: 
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where Nk is the number of frequency points in the transform. Equations 2 and 3 (a and b 
not shown) are written as summations rather than integrals because integrals apply to 
infinite continuous functions, whereas spectral data are finite, discrete sequences. (The 
coefficient 1/Nk becomes 1/2π when f(t) is an infinite periodic sequence.)  There will be 
more on using discrete transforms in the Numerical Fourier transforms section.  A 
shorthand notation often used for the Fourier transform operation is FT, and for inverse 
transform, FT-1.  Thus, 
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There is an inverse relation between the widths of the functions f(t) and  ˆF (ω).  A 
short pulse (time) has a wide spectrum (frequency).  Conversely, a pure cosine wave 
extending infinitely in time has an infinitely narrow spectrum (transform).  You 
encountered this relationship in quantum mechanics. The Heisenberg uncertainty 
relation, Δt*ΔE≥h/2πc, states that one cannot know simultaneously the precise duration 
(location of the wave) and energy (or position and momentum) of an electron.  This 
principle arises directly from Fourier transform relations because quantum mechanical 
entities behave like waves.  One illustration of this in daily life is the interference of 
spark sources on AM radio reception.  If someone turns on a power supply in the lab no 
matter what AM station is on, you hear the spark (static) because the spark (a short 
pulse in time) has a broad frequency spectrum. One of the simplest functions to 
transform is the Gaussian function.  Its Fourier transform also is a Gaussian function, 
but in the frequency domain.  The Fourier transform relation between widths of 
Gaussians in the time domain and frequency domain is also very simple: σtσω=1.  This 
equation clearly shows the inverse relation between time domain and frequency domain 
functions.  While this simple relation (σtσω=1) only applies to Gaussians, it is generally 
true for any pair of transforms that σtσω=constant.   

To get a feel for the practical utility of this Fourier transform property, consider 
the following example.  If a fast electronic pulse is to be amplified and measured, one 
must ensure that the detection equipment responds quickly enough to measure the 
pulse without distortion.  Since it is convenient to think of the signal acquisition rate as a 
frequency (units are inverse seconds), we can describe detector performance using 
frequency limits and bandwidths.  So when you go to purchase detection electronics, 
you immediately find that the speed of a device is normally described by its frequency 
behavior.  An amplifier that has a response that drops significantly above 1 MHz, such 
as a typical operational amplifier, is useless for amplifying pulses that have widths much 
narrower than 1 µs (1 MHz=1/10-6 s).  Specification of the frequency at which the output 
drops to half its maximum value is a common performance parameter for an amplifier.  
The amplifier bandwidth, the range of useful operation frequencies, is a common 
alternative.  The wider the amplifier bandwidth (frequency), the shorter the width of the 
signal (time) it will amplify.   
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Frequency components of Library functions 
 
The most important property of the Fourier transform is its linearity. This means 

that the Fourier transform obeys a strict set of rules, specifically 

  

 

af (t)! aF̂(" )

c
1
f (t) + c

2
g(t)! c

1
F̂(" ) + c

2
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This means that whenever we can describe a new waveform as a multiple, combination 
or convolution of simpler functions whose transforms we know, we can compute the 
transform of the new waveform.  (There will be more on convolution later; for now think 
of it as a special type of vector multiplication in which the features of both vectors are 
mixed in the product.) Consequently, it’s useful to learn the transforms of a small 
number of simple functions that appear often in the context of spectral measurements.  
We will use these functions as a kind of library for analyzing new waveforms.   

One of the simplest functions to transform is Acos(ωt); it has a single point in its 
spectrum (considering only the positive frequencies).   A sequence with a single non-
zero point is called the Dirac delta function.  In this case, the transform is represented 
as Aδ(ω−ω0), where ω0 is the location of the non-zero point.  In Fig. 8.3 below, A is 22.68 
and ω0 is 25.  There is an identical peak at ω0=-25 that is not shown here.   

Notice that the Dirac function is also the transform of constant functions.  Remember a 
constant corresponds to a harmonic (cosine, sine or exponential) that has zero 
frequency.   

Adding cosine waves that have neighboring frequencies in the interferogram 
produces spectral bands that have a finite width in the transform.  This is illustrated in 
the following example, where the frequency components are weighted by a Gaussian 
function.  Again in this example, the negative frequencies are not shown in Fig. 8.3, but 
the left half of the spectral profile would be identical to the right, forming a Gaussian 

Figure 8.3: Fourier Transform of Acos(ωt) 
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spectral profile.  (In fact the focus on the frequencies near zero in the figure obscures 
the fact that the transform consists of a train of pulses just as the waveform does.) 
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Figure 8.4: Fourier transform of Gaussian pulse train 

Since the inverse Fourier transform of a frequency domain Gaussian is a time domain 
Gaussian, the interferogram that generates this spectrum must consist of Gaussian 
profiles as well.  

It is interesting to see how frequency components combine to make familiar 
shapes.  For example, the rectangle or window function and the sinc function are a 
transform pair.  Adding cosines of similar frequency (within the window) will produce a 
waveform that is reinforced at zero (on the time axis) but decays quickly with time as it 
oscillates because of the ‘destructive interference’ of cosines of different frequency.   

A similar function that is also important in spectroscopy is the square wave.  For 
example, lock-in amplifiers, which are electronic devices used to improve detection in 
many spectrophotometers, essentially multiply the instrument output by a “train” of 
square waves (See Figure 8.6). For example in absorbance measurements, mechanical 
chopping of the source signal imposes a square wave on both the reference (incident) 
and sample (transmitted) 
signals.  This translates the 
signal to a frequency range that 
is not subject to drift and other 
low frequency noise to the 
extent that steady-state 
measurements are. The lock-in 
amplifier is used to operate the 
detector at the chopper 
frequency. The reference signal 

  
Figure 8.5: Window function and Sinc Function (transform) 
   (from Interactive Digital Geophysical Analysis Webpage.) 
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Figure 8.6: Lock-in Amplifier Signal 
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for the lock-in amplifier is generated by placing a small light-emitting diode on one side 
of the chopper and a photodiode on the other side.  The detector uses this signal to 
track the intensity changes produced by the chopper. A square wave is built from the 
odd harmonics of a fundamental (here chopper) frequency, ω in equation 4, 
(approximately 1/180 s ~ 0.006 Hz in Fig. 8.6): 

f(t) =
1

2n +1( )n
! sin 2n +1( )" t( ) ,      (4) 

but it is also a periodic rectangle function, so the transform of the square wave is a sinc 
function that shows the relative importance of the harmonics of ω to the signal (see Fig. 
8.5). In the absorbance spectrometer electronic bandpass filters are used to isolate the 
chopper frequency in order to make the measurement at a single frequency. 
 

 
Table 8A:  Fourier transforms of Library functions (Marshall & Verdun, 1990.) 
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 Other important functions in spectroscopy include the Heaviside function, H(t-t0) 
which is zero (off) until some time t0 when the measurement starts, the exponential 
decay, f(t)=e-at, which describes the dissipation observed in countless properties as 
random processes relax perturbed states and the comb function, which is a sequence of 
evenly spaced dirac pulses.  The table above depicts the Fourier transform pairs of the 
library functions that have been described so far.  (The imaginary oscillations are 
included for completeness.)   

Now we will use the library function concept to help us analyze what happens to 
a square wave when it is improperly electronically filtered.  Consider the common 
example of low-pass filtering, where the square wave is passed through an RC 
(resistance-capacitance) filter with a time constant that is too low to capture all the 
signal features, as often happens because the frequency range of instruments is limited.  
A low pass RC filter attenuates the frequency components by the factor [1/1+(ωτ)2]1/2, 
where τ=R⋅C. In other words the filter multiplies the square wave transform by these 
attenuation factors (one at each frequency) and shifts the phase of each sine 
contributing to the square wave by φ(ω)=tan-1(ωτ), resulting in a highly distorted square 
wave when ωτ is sufficiently large. The question is ‘what is the shape of the distorted 
waveform?’  Fortunately, the attenuation factor is the transform of one of our library 
functions, the exponential decay, e-t/τ.  So we can predict that the sharp edges of the 
square wave will be distorted to exponentials by the filter.  Fig. 8.7 (blue trace) shows 
that this is indeed the case. The filtered square wave is the first signal for which phase 
is an issue.  The components of the filtered signal have real and imaginary components, 
which produces a non-zero phase relationship. 
 

 
Figure 8.7: Impact of filtering on square wave 
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