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Chapter 6

Quantum Theory
and the Electronic
Structure of Atoms
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6.1 The Nature of Light

The electromagnetic spectrum includes
many different types of radiation.

Visible light accounts for only a small
part of the spectrum

Other familiar forms include: radio
waves, microwaves, X rays

All forms of light travel in waves
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Electromagnetic Spectrum
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Wave Characteristics

 Wavelength: ) (lambda) distance
between identical points on successive
waves...peaks or troughs

* Frequency:v (nu) number of waves that
pass a particular point in one second

 Amplitude: the vertical distance from
the midline of waves to the top of the
peak or the bottom of the trough
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Wave Characteristics

» Wave properties are mathematically related
as:

C=A\vV
where
c =2.99792458 x 108 m/s (speed of light)
A = wavelength (in meters, m)
v = frequency (reciprocal seconds, s7)
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Wave Calculation

The wavelength of a laser pointer is reported
to be 663 nm. What is the frequency of this
light”?
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Wave Calculation

The wavelength of a laser pointer is reported
to be 663 nm. What is the frequency of this

light? c
L=—

A

-9
1-663nmx 2™ _663x107m
nm

o 3.00x10°m/s
6.63x10"'m
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Your Turn!

Calculate the wavelength of light, in nm,
of light with a frequency of 3.52 x 1074 s,
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Calculate the wavelength of light, in nm,
of light with a frequency of 3.52 x 1074 s,
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6.2 Quantum Theory

1900 - Max Planck

Radiant energy could only be emitted or
absorbed in discrete quantities

Quantum: packets of energy

Correlated data from blackbody
experiment to his quantum theory

Revolutionized way of thinking (energy
IS quantized)
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Quantum Theory

* Energy of a single quantum of energy

E=hvo
where
E = energy (in Joules)
h = Planck’s constant 6.63 x 1034 J - s

v = frequency
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Photoelectric Effect

» Electrons ejected from a metal’s surface
when exposed to light of certain
frequency

* Einstein proposed that particles of light
are really photons (packets of liaht
energy) and deduced that

E = hy

photon
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* Only light with a frequency of photons
such that hv equals the energy that
binds the electrons in the metal is
sufficiently energetic to eject electrons.

* [f light of higher frequency is used,
electrons will be ejected and will leave
the metal with additional kinetic energy.

— (what is the relationship between energy
and frequency?)

* Light of at least the threshold frequency
and of greater intensity will eject more
electrons.
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Calculate the energy (in joules) of a photon
with a wavelength of 700.0 nm
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Calculate the energy (in joules) of a photon
with a wavelength of 700.0 nm

10”°m
nm

- 3.00x10°m/s
7.00x10"m

A =700.0 nm x =7.00x10""m

= 4.29%x10"s™

D

E =(6.63x107%J-5)(4.29x10"*s™)

E=284x10"J
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Your Turn!

Calculate the wavelength (in nm) of light
with energy 7.85 x 10-1° J per photon. In
what region of the electromagnetic
radiation does this light fall?
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Calculate the wavelength (in nm) of light
with energy 7.83 x 10-1° J per photon. In
what region of the electromagnetic
radiation does this light fall?
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Photoelectric Effect

* Dilemma caused by this theory - is light
a wave or particle?

* Conclusion: Light must have particle
characteristics as well as wave
characteristics
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6.3 Bohr's Theory of the
Hydrogen Atom

* Planck’s theory along with Einstein’s
ideas not only explained the
photoelectric effect, but also made it
possible for scientists to unravel the
idea of atomic line spectra

Copyright McGraw-Hill 2009 20



Atomic Line Spectra

* Line spectra: emission of light only at
specific wavelengths

* Every element has a unique emission
spectrum

» Often referred to as “fingerprints”™ of the
element
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Atomic Line Spectra
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Bright-line Spectra

Bright-line Spectra
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Line Spectra of Hydrogen
 The Rydberg equation:

1:Roo 12_ 12
A ny n,

« Balmer (initially) and Rydberg (later)
developed the equation to calculate
all spectral lines in hydrogen
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Line Spectra of Hydrogen

 Bohr's contribution:

showed only valid energies for
hydrogen’s electron with the
following equation

E, =2.18x1o18J£12j
n
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Line Spectra of Hydrogen

* As the electron gets closer to the
nucleus, E, becomes larger in absolute
value but also more negative.

* Ground state: the lowest energy state of
an atom

» Excited state: each energy state in
which n > 1
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Line Spectrum of Hydrogen

* Each spectral line corresponds to a
specific transition

* Electrons moving from ground state to
higher states require energy; an
electron falling from a higher to a lower
state releases energy

* Bohr's equation can be used to
calculate the energy of these transitions
within the H atom
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Energy Transitions

Calculate the energy needed for an
electron to move fromn=1ton=4.
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Energy Transitions

Calculate the energy needed for an

electron to move fromn=1ton=4.

AE=2.18><1018J(41—2—1L2J

AE =2.04x107"%]

Note: final — initial levels
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TABLE 6.1 Emission Series in the Hydrogen Spectrum

Series n; n; Spectrum Region
Lyman 1 2,3,4,... Ultraviolet

Balmer 2 3,4,5,... Visible and ultraviolet
Paschen 3 4,5,6,... Infrared

Brackett 4 5,6,7,... Infrared

[¢'e]
7
6
5
4
3
Paschen
series
>
g YYVYVY
c 2
w Balmer
series
n=1L_YYYYYY
Lyman

series
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6.4 Wave Properties of Matter

* Bohr could not explain why electrons
were restricted to fixed distances
around the nucleus

* Louis de Broglie (1924) reasoned that if
energy (light) can behave as a particle
(photon) then perhaps particles
(electrons) could exhibit wave
characteristics
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Wave Properties of Matter

* De Broglie proposed that electrons in
atoms behave as standing waves (like
the wave created when a guitar string is
plucked)

* There are some points called nodes
(where the wave exhibits no motion at

all)
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Wave Properties of Matter

3 half-wavelengths

() (b)

Copyright McGraw-Hill 2009

33



Wave Properties of Matter

* De Broglie's idea of particle and wave
properties are related by the following

A=—0o
mu
where A = wavelength
m = mass (kg)
u = velocity (m/s)
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Calculate the de Broglie wavelength of
the “particle” in the following two cases:

A 25.0 g bullet traveling at 612 m/s

An electron (mass = 9.109 x 10-3'kg)
moving at 63.0 m/s

Note: 1 Joule = 1 kg - m4/s?
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A 25.0 g bullet traveling at 612 m/s

. 6.63x107*kg-m” /s

— —4.3%x107  m*
(0.025 ke)(612 m/s)

An electron (mass = 9.109 x 1031 kg)
moving at 63.0 m/s

B 6.63x10*kg m°/s
(9.109x107" kg)(63.0 m/s)

* Wavelengths of macroscopic particles are imperceptibly small and really
have no physical significance.

y) =1.16x10"° m
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6.5 Quantum Mechanics

» Scientists yearned to understand
exactly where electrons are in an atom.

* Heisenberg’s uncertainty principle
mathematically described the position
and velocity of an electron. The more
you know about one, the less you are
sure about the other quantity.
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Quantum Mechanics

* Heisenberg's equation disproved Bohr's
model of defined orbits for electrons

* Bohr's theory did not provide a clear
description

* Erwin Schrodinger, derived a complex
mathematical formula to incorporate
wave and particle characteristics
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Quantum Mechanics

« Quantum mechanics (wave mechanics)

* Does not allow us to specify exact
ocation of electrons, we can predict
nigh probability of finding an electron

« Use the term atomic orbital instead of
“orbit” to describe the electron’s position
within the atom
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6.6 Quantum Numbers

» Each atomic orbital in an atom is
characterized by a unique set of three
quantum numbers (from Schrodinger’s

wave equation)
* n, I, and m,
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Quantum Numbers

Principal quantum number (n) -
designates size of the orbital

Integer values: 1,2,3, and so forth

1} b

The larger the “n” value, the greater the
average distance from the nucleus

Correspond to quantum numbers in
Bohr's model
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Quantum Numbers

 Angular momentum quantum
number (I) - describes the shape of the
atomic orbital

* Integer values: Oton —1
e 0=ssublevel;1=p;2=d;3=f
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Quantum Numbers

Magnetic quantum number (m) -
describes the orientation of the orbital in
space (think in terms of x, y and z axes)

Integer values: — /to O to + /
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Quantum Numbers

TABLE 6.2

When n is
i
2

¢ can be
only O
Oorl

0. 1. 082

(N var 5
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W= O N—=O =O

m, can be
only O

only 0
—1,0, or +1

only 0
—1,0, or +1
—2,—1,0, +1, or +2

only O

—1,0, or +1
—2,—1,0, +1, or +2
—3,—2,—1,0, +1, +2, or +3
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Quantum Numbers
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Quantum Numbers

» Electron spin quantum number (m.) -
describes the spin of an electron that
occupies a particular orbital

 Values: +1/2 or —-1/2

* Electrons will spin opposite each other
In the same orbital
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Quantum Numbers

Which of the following are possible sets of
quantum numbers?

a)1,1,0, +1/2

b) 2,0, 0, +1/2

c)3,2,-2,-1/2
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Quantum Numbers

Which of the following are possible sets of
quantum numbers?
a)1,(1) 0, +1/2 I value not possible
b)2,0,0, +1/2 possible
c) 3, 2,-2,-1/2 possible
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6.7 Atomic Orbitals

“Shapes’

(1Pl

S’ orbita

(1 L)

p” orbita
sides of t

“d’ orbita

of atomic orbitals
- spherical in shape

s - two lobes on opposite
ne nucleus

S - more variations of lobes

“f’ orbitals - complex shapes
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Atomic Orbitals for “d”

3d,» L
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6.8 Electron Configuration

 Ground state - electrons in lowest
energy state

« Excited state - electrons in a higher
energy orbital

» Electron configuration - how electrons
are distributed in the various atomic

orbitals
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Compare the Following
Emission Spectra

Hydrogen
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Electron Configuration -
Notice the Energy for Each
Orbital

————————————————— 4d

Pl — == e e s e e e e e e e e e
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Electron Configuration

* Pauli Exclusion Principle - no two
electrons in an atom can have the same
four quantum numbers; no more than
two electrons per orbital

* Aufbau Principle - electrons fill
according to orbital energies (lowest to
highest)
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Electron Configuration

 Hund’s Rule - the most stable
arrangement for electrons in orbitals of
equal energy (degenerate) is where the
number of electrons with the same spin
IS maximized

« Example: Carbon - 6 electrons
cAst2s2p? [ [ L]
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Rules for Writing Electron

Configurations
Electrons reside in orbitals of lowest
possible energy
Maximum of 2 electrons per orbital

Electrons do not pair in degenerate
orbitals if an empty orbital is available

Orbitals fill in order of earlier slide (or
an easy way to remember follows)
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The Diagonal Rule

Ls

25 2p

35 3p 3d

4s 4p 4d 4f
Ss 5p 5d 5f
6s 6p 6d

Ts p
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Practice Electron Configuration and
Orbital Notation

Write the electron configuration and
orbital notation for each of the following
Z=20
Z =35
Z =26
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Z =20 1s%2s%2pb3s23pb4s? (Ca)

1

K

1

1

H

1

1

1

1

1

1s 2s

2p

3s

3p

4s

Z = 35 15%25%2p03523p%4523d'%4p> (Br)

UL T T e T T T T T[T T

1s 2s 2p 3s 3p 4s 3d 4p
Z =26 15%2s%2pb3s523p®4s23d° (Fe)

LT T T e T et e g

1s 2s 2p 3S 3p 4s 3d
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6.9 Electron Configurations
and the Periodic Table

» Position on the periodic table indicates
electron configuration

 What similarities are found within
groups on the table?
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Electron Configurations and
the Periodic Table

* Noble gas core configuration - can be
used to represent all elements but |
and He

Example:
Z =15 [15%25%2p%]3s23p3 (P)
[Ne] 3s23p° (P)
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ls ls
2% 2p
3s 3p
45 3d 4p
Ss 4d SD
6s 5d 6p
s 6d p
Af
Sf
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Too Good to Be True?

 Not all elements follow the “order” of the
diagonal rule

* Notable exceptions: Cu (Z=29) and
Cr(Z=24)
Cu = [Ar]4s'3d10
Cr = [Ar]4s'3adP

Reason: slightly greater stability associated with filled
and half-filled d subshells
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Key Points

» Electromagnetic spectrum

» Wavelength, frequency, energy
(calculate)

* Quanta (of light - photon)

* Photoelectric effect

* Emission spectra

» Ground state vs excited state

* Heisenberg uncertainty principle
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Key Points

* Quantum numbers (n, I, m,, m,) predict
values and possible sets

 Electron configuration - identify and
write (also noble gas core)

» Pauli exclusion principle, Hund’s rule,
Aufbau principle
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