TABLE 4.2 Groups of Low Symmetry

Group	Symmetry	Examples	
C_1	No symmetry other than the identity operation	CHFCIBr	H C Cl Br
C_s	Only one mirror plane	H ₂ C=CClBr	H C=C Br
C_i	Only an inversion center; few molecular examples	HClBrC — CHClBr (staggered conformation)	Br H C-C Cl Br

TABLE 4.3 Groups of High Symmetry

Group	Description	Examples
$C_{\infty y}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.	C_{∞} H—Cl
$D_{\infty h}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.	C_{∞} $O = C_{2}$ C_{2}
T_d	Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.	H H H
O_h	These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.	F-S-F F F
I_h	Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations—120 in all.	B ₁₂ H ₁₂ ²⁻ with BH at each vertex of an icosahedron

In addition, there are four other groups, T, T_h , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section.

Point group	Characteristic symmetry elements	Comments
$C_{\rm s}$	E, one σ plane	
$C_{ m i}$	E, inversion centre	
C_n	E, one (principal) n-fold axis	
C_{nv}	E, one (principal) <i>n</i> -fold axis, $n \sigma_v$ planes	
$C_{n\mathrm{h}}$	E, one (principal) <i>n</i> -fold axis, one σ_h plane, one S_n -fold axis which is coincident with the C_n axis	The S_n axis necessarily follows from the C_n axis and σ_h plane For $n = 2$, 4 or 6, there is also an inversion centre
$D_{n\mathrm{h}}$	E, one (principal) <i>n</i> -fold axis, n C_2 axes, one σ_h plane, n σ_v planes, one S_n -fold axis	The S_n axis necessarily follows from the C_n axis and σ_h plane For $n = 2$, 4 or 6, there is also an inversion centre
D_{nd}	E, one (principal) <i>n</i> -fold axis, n C_2 axes, n σ_v planes, one S_{2n} -fold axis	For $n = 3$ or 5, there is also an inversion centre
$T_{\rm d}$		Tetrahedral
$O_{ m h}$		Octahedral
$I_{ m h}$		Icosahedral

TABLE 4.6 Properties of a Group

TABLE 4.0 Troperties of a Group	
Property of Group	Examples from Point Group
 Each group must contain an identity operation that commutes (in other words, EA = AE) with all other members of the group and leaves them unchanged (EA = AE = A). 	C_{3v} molecules (and <i>all</i> molecules) contain the identity operation E .
 Each operation must have an inverse that, when combined with the operation, yields the identity opera- tion (sometimes a symmetry operation may be its own inverse). Note: By convention, we perform sequential symmetry operations from right to left as written. 	H_1 H_2 H_3 H_4 H_5 H_4 H_5 H_6 H_7 H_8
 The product of any two group operations must also be a member of the group. This includes the product of any operation with itself. 	H_1 H_3 H_2 H_3 H_4 H_3 H_4 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H_8 $G_{\nu}C_3$ has the same overall effect as $G_{\nu}C_3$, therefore we write $G_{\nu}C_3 = G_{\nu}C_3$. It can be shown that the products of any two operations in $G_{3\nu}$ are also members of $G_{3\nu}$.
 The associative property of combination must hold. In other words, A(BC) = (AB)C. 	$C_3(\sigma_{\nu}\sigma_{\nu}') = (C_3\sigma_{\nu})\sigma_{\nu}'$

General case:
$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
For C_3 : $\theta = 2\pi/3 = 120^{\circ}$

General Transformation Matrix for rotation by θ° about z axis:

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

TABLE 4.8 Representation Flowchart: $H_2O(C_{2\nu})$

Symmetry Operations

$$H_1$$
 H_2
after E

$$H_1$$
 H_2
after $\sigma_v(xz)$

$$H_2$$
 H_1
after $\sigma_{y'}(yz)$

Reducible Matrix Representations

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_{v}(xz):\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_{\nu}(xz): \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_{\nu}'(yz): \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Characters of Matrix Representations

$$-1$$

Block Diagonalized Matrices

$$\begin{bmatrix} [1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

$$\begin{bmatrix} [1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

$$\begin{bmatrix} [-1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

\boldsymbol{E}	C_2	$\sigma_v(xz)$	$\sigma_{v}{'}(yz)$
3	-1	1	1

	E	C_2	$\sigma_{v}(xz)$	$\sigma_{v}'(yz)$	Coordinate Used
	1	-1	1	-1	X
	1	-1	-1	1	y
	1	1	1	1	Z
Γ	3	-1	1	1	

C_{2v}	\boldsymbol{E}	C_2	$\sigma_v(xz)$	$\sigma_{v}'(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	XZ
B_2	1	-1	-1	1	y, R_x	уz

D_{3d}	E	2C ₃	$3C_2$	i	2S ₆	$3\sigma_d$		
A_{1g}	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	-1	1	1	-1	R_z	
E_g	2	-1	0	2	-1	0	(R_x, R_y)	$(x^2-y^2,xy)(xz,yz)$
A_{1u}	1	1	1	-1	-1	-1		
A_{2u}	1	1	-1	-1	-1	1	z	
E_u	2	-1	0	-2	1	0	(x, y)	

D_{3h}	E	$2C_3$	$3C_2$	σ_h	2S ₃	$3\sigma_v$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2'	1	1	-1	1	1	-1	R_{z}	
E'	2	-1 1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A_1''	1	1	1	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

TABLE 4.9 Properties of the Characters for the C_{3v} Point Group

Property	C _{3v} Example
1. Order	6 (6 symmetry operations)
2. Classes	3 classes: E $2C_3 (= C_3, C_3^2)$ $3\sigma_v (= \sigma_v, \sigma_v', \sigma_v'')$
Number of irreducible representations	$3(A_1, A_2, E)$
 Sum of squares of dimensions equals the order of the group 	$1^2 + 1^2 + 2^2 = 6$
 Sum of squares of characters multiplied by the number of operations in each class equals the order of the group 	$\frac{E + 2C_3 + 3\sigma_v}{A_1: 1^2 + 2(1)^2 + 3(1)^2 = 6}$ $A_2: 1^2 + 2(1)^2 + 3(-1)^2 = 6$ $E: 2^2 + 2(-1)^2 + 3(0)^2 = 6$ (Multiply the squares by the number of symmetry operations in each class.)
6. Orthogonal representations	The sum of the products of any two representations multiplied by the number of operations in each class equals 0. Example of $A_2 \times E$: $(1)(2) + 2(1)(-1) + 3(-1)(0) = 0$
Totally symmetric representation	A_1 , with all characters = 1

Complex

Point group

 $M(CO)_6$

 $M(CO)_5X$

trans- $M(CO)_4X_2$

cis-M(CO)₄X₂

fac-M(CO) $_3X_3$

mer-M(CO) $_3$ X $_3$

Complex	Point group
$M(CO)_6$	$O_{ m h}$
$M(CO)_5X$	$C_{ m 4v}$
trans-M(CO) ₄ X ₂	$D_{ m 4h}$
cis-M(CO) ₄ X ₂	$C_{ m 2v}$
fac -M(CO) $_3$ X $_3$	$C_{ m 3v}$
mer-M(CO) ₃ X ₃	$C_{2\mathrm{v}}$