TABLE 4.2 Groups of Low Symmetry | Group | Symmetry | Examples | | |-------|--|---|-----------------| | C_1 | No symmetry other than the identity operation | CHFCIBr | H
C
Cl Br | | C_s | Only one mirror plane | H ₂ C=CClBr | H C=C Br | | C_i | Only an inversion center; few molecular examples | HClBrC — CHClBr
(staggered conformation) | Br H C-C Cl Br | TABLE 4.3 Groups of High Symmetry | Group | Description | Examples | |----------------|--|--| | $C_{\infty y}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion. | C_{∞} H—Cl | | $D_{\infty h}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center. | C_{∞} $O = C_{2}$ C_{2} | | T_d | Most (but not all) molecules in this point group
have the familiar tetrahedral geometry. They have
four C_3 axes, three C_2 axes, three S_4 axes, and six
σ_d planes. They have no C_4 axes. | H
H
H | | O_h | These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion. | F-S-F
F F | | I_h | Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations—120 in all. | B ₁₂ H ₁₂ ²⁻ with BH
at each vertex of
an icosahedron | In addition, there are four other groups, T, T_h , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section. | Point group | Characteristic symmetry elements | Comments | |-------------------|--|--| | $C_{\rm s}$ | E, one σ plane | | | $C_{ m i}$ | E, inversion centre | | | C_n | E, one (principal) n-fold axis | | | C_{nv} | E, one (principal) <i>n</i> -fold axis, $n \sigma_v$ planes | | | $C_{n\mathrm{h}}$ | E, one (principal) <i>n</i> -fold axis, one σ_h plane, one S_n -fold axis which is coincident with the C_n axis | The S_n axis necessarily follows from the C_n axis and σ_h plane
For $n = 2$, 4 or 6, there is also an inversion centre | | $D_{n\mathrm{h}}$ | E, one (principal) <i>n</i> -fold axis, n C_2 axes, one σ_h plane, n σ_v planes, one S_n -fold axis | The S_n axis necessarily follows from the C_n axis and σ_h plane
For $n = 2$, 4 or 6, there is also an inversion centre | | D_{nd} | E, one (principal) <i>n</i> -fold axis, n C_2 axes, n σ_v planes, one S_{2n} -fold axis | For $n = 3$ or 5, there is also an inversion centre | | $T_{\rm d}$ | | Tetrahedral | | $O_{ m h}$ | | Octahedral | | $I_{ m h}$ | | Icosahedral | **TABLE 4.6 Properties of a Group** | TABLE 4.0 Troperties of a Group | | |--|---| | Property of Group | Examples from Point Group | | Each group must contain an identity operation that
commutes (in other words, EA = AE) with all other
members of the group and leaves them unchanged
(EA = AE = A). | C_{3v} molecules (and <i>all</i> molecules) contain the identity operation E . | | Each operation must have an inverse that, when
combined with the operation, yields the identity opera-
tion (sometimes a symmetry operation may be its own
inverse). Note: By convention, we perform sequential
symmetry operations from right to left as written. | H_1 H_2 H_3 H_4 H_5 H_4 H_5 H_6 H_7 H_8 | | The product of any two group operations must also be a
member of the group. This includes the product of any
operation with itself. | H_1 H_3 H_2 H_3 H_4 H_3 H_4 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H_8 $G_{\nu}C_3$ has the same overall effect as $G_{\nu}C_3$, therefore we write $G_{\nu}C_3 = G_{\nu}C_3$. It can be shown that the products of any two operations in $G_{3\nu}$ are also members of $G_{3\nu}$. | | The associative property of combination must hold. In
other words, A(BC) = (AB)C. | $C_3(\sigma_{\nu}\sigma_{\nu}') = (C_3\sigma_{\nu})\sigma_{\nu}'$ | General case: $$x' = x \cos \theta - y \sin \theta$$ $y' = x \sin \theta + y \cos \theta$ For C_3 : $\theta = 2\pi/3 = 120^{\circ}$ General Transformation Matrix for rotation by θ° about z axis: $$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$ ## TABLE 4.8 Representation Flowchart: $H_2O(C_{2\nu})$ Symmetry Operations $$H_1$$ H_2 after E $$H_1$$ H_2 after $\sigma_v(xz)$ $$H_2$$ H_1 after $\sigma_{y'}(yz)$ Reducible Matrix Representations $$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ $$C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ $$\sigma_{v}(xz):\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ $$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_{\nu}(xz): \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_{\nu}'(yz): \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ Characters of Matrix Representations $$-1$$ Block Diagonalized Matrices $$\begin{bmatrix} [1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix} \qquad \begin{bmatrix} [-1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$ $$\begin{bmatrix} [1] & 0 & 0 \\ 0 & [-1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$ $$\begin{bmatrix} [-1] & 0 & 0 \\ 0 & [1] & 0 \\ 0 & 0 & [1] \end{bmatrix}$$ | \boldsymbol{E} | C_2 | $\sigma_v(xz)$ | $\sigma_{v}{'}(yz)$ | |------------------|-------|----------------|---------------------| | 3 | -1 | 1 | 1 | | | E | C_2 | $\sigma_{v}(xz)$ | $\sigma_{v}'(yz)$ | Coordinate Used | |---|---|-------|------------------|-------------------|-----------------| | | 1 | -1 | 1 | -1 | X | | | 1 | -1 | -1 | 1 | y | | | 1 | 1 | 1 | 1 | Z | | Γ | 3 | -1 | 1 | 1 | | | C_{2v} | \boldsymbol{E} | C_2 | $\sigma_v(xz)$ | $\sigma_{v}'(yz)$ | | | |----------|------------------|-------|----------------|-------------------|----------|-----------------| | A_1 | 1 | 1 | 1 | 1 | Z | x^2, y^2, z^2 | | A_2 | 1 | 1 | -1 | -1 | R_z | xy | | B_1 | 1 | -1 | 1 | -1 | x, R_y | XZ | | B_2 | 1 | -1 | -1 | 1 | y, R_x | уz | | D_{3d} | E | 2C ₃ | $3C_2$ | i | 2S ₆ | $3\sigma_d$ | | | |----------|---|-----------------|--------|----|-----------------|-------------|--------------|-----------------------| | A_{1g} | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2, z^2$ | | A_{2g} | 1 | 1 | -1 | 1 | 1 | -1 | R_z | | | E_g | 2 | -1 | 0 | 2 | -1 | 0 | (R_x, R_y) | $(x^2-y^2,xy)(xz,yz)$ | | A_{1u} | 1 | 1 | 1 | -1 | -1 | -1 | | | | A_{2u} | 1 | 1 | -1 | -1 | -1 | 1 | z | | | E_u | 2 | -1 | 0 | -2 | 1 | 0 | (x, y) | | | D_{3h} | E | $2C_3$ | $3C_2$ | σ_h | 2S ₃ | $3\sigma_v$ | | | |----------|---|---------|--------|------------|-----------------|-------------|--------------|------------------| | A_1' | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2, z^2$ | | A_2' | 1 | 1 | -1 | 1 | 1 | -1 | R_{z} | | | E' | 2 | -1
1 | 0 | 2 | -1 | 0 | (x, y) | (x^2-y^2,xy) | | A_1'' | 1 | 1 | 1 | -1 | -1 | -1 | | | | A_2'' | 1 | 1 | -1 | -1 | -1 | 1 | z | | | E'' | 2 | -1 | 0 | -2 | 1 | 0 | (R_x, R_y) | (xz, yz) | TABLE 4.9 Properties of the Characters for the C_{3v} Point Group | Property | C _{3v} Example | |---|--| | 1. Order | 6 (6 symmetry operations) | | 2. Classes | 3 classes:
E $2C_3 (= C_3, C_3^2)$ $3\sigma_v (= \sigma_v, \sigma_v', \sigma_v'')$ | | Number of irreducible representations | $3(A_1, A_2, E)$ | | Sum of squares of dimensions equals the
order of the group | $1^2 + 1^2 + 2^2 = 6$ | | Sum of squares of characters multiplied
by the number of operations in each class
equals the order of the group | $\frac{E + 2C_3 + 3\sigma_v}{A_1: 1^2 + 2(1)^2 + 3(1)^2 = 6}$ $A_2: 1^2 + 2(1)^2 + 3(-1)^2 = 6$ $E: 2^2 + 2(-1)^2 + 3(0)^2 = 6$ (Multiply the squares by the number of symmetry operations in each class.) | | 6. Orthogonal representations | The sum of the products of any two representations multiplied by the number of operations in each class equals 0. Example of $A_2 \times E$: $(1)(2) + 2(1)(-1) + 3(-1)(0) = 0$ | | Totally symmetric representation | A_1 , with all characters = 1 | ## Complex ## Point group $M(CO)_6$ $M(CO)_5X$ trans- $M(CO)_4X_2$ cis-M(CO)₄X₂ fac-M(CO) $_3X_3$ mer-M(CO) $_3$ X $_3$ | Complex | Point group | |---|-------------------| | $M(CO)_6$ | $O_{ m h}$ | | $M(CO)_5X$ | $C_{ m 4v}$ | | trans-M(CO) ₄ X ₂ | $D_{ m 4h}$ | | cis-M(CO) ₄ X ₂ | $C_{ m 2v}$ | | fac -M(CO) $_3$ X $_3$ | $C_{ m 3v}$ | | mer-M(CO) ₃ X ₃ | $C_{2\mathrm{v}}$ | | | |