Overview

Sulfidic and oxidic metal clusters were characterized using ESI-FT-ICR mass
spectrometry.

were observable in dilute solutions of cadmium nitrate and
cadmium sulfide.

of metal sulfide clusters in dilute agqueous solutions was
observed using ESI FT-ICR mass spectrometry.

Sulfur rich molecular species result from the addition of H;S to dilute metal
nitrate solutions.

Background

Research has shown that clusters are prevalent in the environment and are a
possible building block in mineral formation (Wolthers et al, 2003).
Environmentally, clusters can be defined as a quantum-sized particle or complex,
which contains a discrete number of atoms in @ molecule or ion that |5 small
enough to behave as a dissolved sp . The i i
species and nanoparticulate solid has only recenli)r been deﬁned for FeS and ZnS
and even still there appears to be overlap in the dimensions of aqueous clusters
and nanoparticles (Luther and Rickard, 2005; Rozan et al. 2000). It is possible to
have several clusters of different stoichiometries form into larger species, larger
than the critical nucleus, before nanoparticle formation. Each cluster stoichiometry
can have different physical chemical properties and reactivity due to their unique
structural characteristics.

The chemical or molecular processes involved in the transformation of simple
dissolved species fo solid products are not as well understood. The Ostwald Step
Rule step rule or “the rule of stages” postulates that the precipitate with the
highest solubility (i.e., the least stable solid phase) will form first in a consecutive
precipitation reaction. The precipitation sequence results because nucleation of a
more soluble phase is kinetically favored over that of a less soluble phase due to
the lower solid-solution interfacial tension of the more soluble phase. The
classical interpretation of the Ostwald Step Rule is that the metastable phase
forms first because it is more soluble than the stable phase. The formation of
aqueous metal sulfide cluster complexes has been shown to provide an
alternative mechanism for the Ostwald Step Rule (Luther and Rickard 2005).

The reaction between cadmium and sulfide has been monitored in soluﬂon
electrochemically. Because CdS(aq) ies are not elech tive th

titration experiments where performed in which sulfide was added to Cd(ll) and
vice versa, By measuring the decreasing peaks of unreacted sulfide or cadmium,
a mole ratio can be estimated from the slopes of these titration curves. When
Cd(ll) is reacted with sulfide in the presence of an organic ligand
(ethylenediamine and cysteine), the Cd:S ratio increases (i.e., electrochemically
labile Cd is consumed with less added sulfide). This suggests that organic
molecules can effectively "cap” metal sulfide clusters, preventing further particle
growth and aggregation. Unfortunately, voltametry provides only limited, indirect
information about metal sulfide clusters. It is our goal to reconcile the solution
chemistry using ESI FT-ICR mass spectroscopy.

Methods

In order to investigate the nucleation and particle growth of metal clusters, we
have begun to develop methods to isolated cluster species during different stages
of growth by encapsulating the metal clusters with a self-assembled monoclayer
such as 2-mercaptopyridine (mpH).

Solutions
A) 3 mM aqueous solution of Cd{NOs):-4H.0 diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO:):-4H:0 and 2- mercaptopyridine  (1:1)
diluted 50/50 with MeOH.

C) H:S (g), produced by reaction between Na2S and HCIl, was bubbled
through a 3 mM solution of Cd{NO:);4H;O for ~10s followed by the
addition of 2-mercaptopyridine (1:1) making the final concentration 1.5 mM.
The reaction solution was then diluted 50/50 with MeOH.

Instrumentation: Analysis was done using a 7T Bruker Apex-7T0Qe FT-ICR
mass spectrometer. CID experiments were done in the source region of the
spectrometer by adjusting the potential used to bring the ions into the
accumulation hexapole.
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Experimental Results & Discussion

Mononuclear Cadmium Clusters
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Figure 1: ESI-FTMS spactra of the Cd, cluster region for solutions
A and B with comparison to theoretical isotopic distributions and
isotopic m/z.

Mononuclear Cadmium Clusters (Figure 1)
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= Reaction of Cd{NOz): with 2-mercaptopyridine (mpH) resuilts in the
formation of [CA(NOs)=(mp)] .

w Comparisons  between theoretical and observed  isotopic
distributions and accurate masses (+2ppm) were used to determine
cluster stoichiometry.

o Example: Mass accuracy is within 0.173 ppm and 0.842 ppm
for [CA(NO:}s] and [Cd{NOa):(mp)] respectively.

Tetranuclear Cadmium Clusters
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Figure 4: ESI-FTMS specira of the Cd. cluster region for solutions
A, BandC.
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Figure 2: ESI-FTMS spectra of the Cd; cluster region for solutions
A, BandC.

Polynuclear (2-5) Cadmium Clusters (Figures 2-5)

= Reaction of Cd{NOs). with 2-mercaptopyridine (mpH) results in the
formation of clusters of the type [Cd,(NOs).(mp),]" in which x+y = n+1.

= Introduction of H:S (g) to the solution results in the formation of
metal sulfides which are oxidized to form ¢ ium sulfate

w Increasing abundance of sulfidic cadmium clusters associated
with diminished cadmium nitrate signal along with the systematic
displacement of nitrate with sulfidic species suggest that ESI is
sampling the products of sequential solution processes.

Pentanuclear Cadmium Clusters
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Figure 5. ESI-FTMS specira of the Cds cluster region for solutions
A, BandC.
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Figure 3: ESI-FTMS spectra of the Cd; cluster region for solutions
A,Band C.
CID of Cationoic Cadmium Clusters (Figure 6)
w Pyridal functionality allows for protonation resulting in the formation
of cations such as [Cd(mp)+2H] .
m Collision Induced Dissociation (CID) experiments show multiple
neutral losses of 2-mercaptopyridine (mpH).
CID of Cationic Cadmium Clusters
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Figure 6: ES| FT-MS CID spactra of [Cd(mp).+2H]" at collision
potentials of -1.0V, -5.0V and -20.0V.

Conclusions

m Small Cdy(NO3)zn+y clusters appear in dilute Cd(NO3)2
solutions. These clusters are precursers to the formation
of an ionic solid.

m Treating dilute Cd(NO:): solutions with 2-
mercaptopyridine gives successive substitutions of mp for
NOs in observed clusters. These clusters are intermediate
to the formation of stable Cd,(mp), species (eg: n= 4
Dance, Choy, and Scudder 1984).

m Treating dilute Cd{NO:). solutions with H.S then mpH
produces clusters in which a sulfate replaces two nitrates
giving Cdy(NO:),(mp),80, clusters. These clusters are
oxidized forms of sulfur rich molecular species
Cd.(mp){S)z (eg: n= 8, 10, 17, 32 Lover et al. 1997).

Future Experiemnts

m Pursue further characterization of cationic sufidic metal
clusters.

m Characterize other metal systems (M=2Zn, Co, Fe)
= Probe the effects of concentration on cluster formation.

m Vary counter ions and sulfide ligands.
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