Metal Clusters, Metalloporphyrins and Gas Phase Redox Chemistry: Applications of FTMS

Introduction to FTMS

Two peptide problems

- •Distinguishing isomers: primary structure problem
- •Secondary structure of HPTH
- •Dynamics and mechanism of transition metal redox reactions
 - •A useful gas phase dehydrogenation reaction
 - •A selective oxidation of CO by O₂
- •Equilibrium in charge transfer reactions: Theory and Experiment

•Flavin semiquinones

•Halogenated iron porphyrins

•IR spectra of gas phase anionic metal clusters

.

- 441

÷

1

.

Figure 2.4 Time domain (a) and (b) frequency or mass domain spectrum for 1,1,1,2-tetrachloroethane. (Ref: Ledford Jr., E. B. et al., Anal. Chem., 1980, 52, 466)

. . .

FIG. 4. ESI-FTICR spectrum of bovine carbonic anhydrase II (BCA II) with ubiquitin as internal calibrant, and an expansion of the region around *m*/*z* 856. While the tallest peak of ubiquitin is readily apparent, selection of the tallest BCA II peak is less certain.

Scheme 1

Total Δm = 46.0032 (measured) vs. 46.0036 calculated)

Scheme 6

Synthetic hPTH (1-31)
H - ala
$$\frac{1}{30}$$
 val $\frac{2}{29}$ ser $\frac{3}{28}$ glu $\frac{4}{27}$ ile $\frac{5}{26}$ gln $\frac{6}{25}$ leu $\frac{7}{24}$ nle
 $\frac{8}{23}$ his $\frac{9}{22}$ asn $\frac{10}{21}$ leu $\frac{11}{20}$ gly $\frac{12}{19}$ lys $\frac{13}{18}$ lys $\frac{14}{17}$ leu $\frac{15}{16}$ asn
 $\frac{16}{15}$ ser $\frac{17}{14}$ asp $\frac{18}{13}$ glu $\frac{19}{12}$ arg $\frac{20}{11}$ val $\frac{21}{10}$ glu $\frac{22}{9}$ trp $\frac{23}{8}$ leu
 $\frac{24}{7}$ arg $\frac{25}{6}$ lys $\frac{26}{5}$ leu $\frac{27}{4}$ leu $\frac{28}{3}$ gln $\frac{29}{2}$ asp $\frac{30}{1}$ val - NH₂

Conlon, et al., JACS **122**, 3007(2000) Conlon, et al., Bioorg. Med Chem. **10**, 731(2002)

SORI-CID

- Charge state of interest was isolated (+4)
- SF₆ was introduced through a computer controlled pulsed valve (reservoir P ~ 13 mbar)
- Collision excitation was 500 Hz offresonance

SORI-CID

SORI-CID

Electron Capture Dissociation (ECD)

- Sample is irradiated with low energy, high current electrons (10 eV)
- A cooling gas (Ar or SF₆) is introduced through a computer controlled pulsed valve during the irradiation step
- ECD is a neutralization reaction

ECD Mechanism

Major Products

or

Why ECD?

- Neutral H radical is highly energetic and highly reactive
 - Can break higher energy bonds than SORI-CID
 - Can cleave disulfide bonds and posttranslational modifications
 - Does not denature peptide. Cleavage local to protonation site.

ECD (SF₆ Cooling Gas)

ECD (SF₆ Cooling Gas)

Bond # (From N-terminus)

Synthetic hPTH (1-31)

Peptide Bond #9

- Helical structure can di-solvate proton.
- His-9 may delocalize the radical.

Scheme II

Ekeberg, Lin, Sohlberg, Chen, Ridge, et al., Organomet. <u>18</u>, 40(1999)

Criteria for an Ideal Charging Agent for Polyolefins:

- Chemical modification inside the mass spectrometer
- Functionality in the hydrocarbon not required
- The predominant product characteristic of the original hydrocarbon (distribution)
- Minimal fragmentation

Charging Hydrocarbon Agent Adduct

Current Approach - Chain-end Derivatization

- Organic species (e.g. PR₃) covalently attached to the polymer forming an organic salt
- Labile endgroup necessary for derivatization *– e.g.* polyethylene – presence of vinyl group
- Aggressive reaction conditions necessary for saturated polyolefin derivatization
- Several days required for synthesis, sample work-up, and characterization

Higher MW Hydrocarbons Show Similar Double Dehydrogenation Reactivity

Comparison with Past Work

 reaction of C-28 with Co⁺ produces adduct ion as well as extensive fragmentation

 reaction with CpCo⁺⁺ shows minimal fragmentation

 $F' - C_5H_6$ loss from Adduct $-2H_2$

Oxidation of Metal Monocarbonyl Cations

 $M(CO)^{+} + O_{2} \rightarrow MO^{+} + CO_{2} (1)$ observed only for M = Fe **<u>not</u>** observed for M = Cr, Mn, Co, Ni

Thermochemistry of O2 Oxidation of CO Ligand (Kcal/mol)

Μ	D(M ⁺ -CO)	D(M ⁺ -O)	$\Delta H(1)$
	[state]	[state]	
Cr	21.4 [⁶ Σ ⁺]	85.8 [⁴ Σ ⁻]	-72.4
Mn	22.1 [⁵ П]	68.0 [⁵ П]	-52.3
Fe	31.3 [⁴ Σ ⁻]	$80.0 [^{6}\Sigma^{+}]$	-56.7
Co	41.5 [³ Δ]	74.9 [⁵ Δ]	-41.1
Ni	41.7 [² Σ ⁺]	63.2 [⁴ Σ ⁻]	-29.6

Reaction of FeCO+ w/ O2; Xfer Method, 2.1x10^-7 Torr

 $Fe(CO)^{+} + O_2 \rightarrow products$

The Effect of Exciting Fe(CO)⁺

Time (s)

Potential Energy Surface for $Fe(CO)^+ + O_2$

Potential Energy Surface for $Cr(CO)^+ + O_2$

Variation with time of lumiflavin anion and 1,4 naphthoquinone anion in a mixture of the neutrals

Flavin in Various Oxidation States

D. Fully Reduced (**FIH**₂)

Property	B3-LYP/6-31G(d) ^{a,b}	B3-LYP/6-31+G**a,c	Experimental FTMS (Electrochemistry)
EA(Fl)	1.54 eV (B3-LYP/6-311++G(d) 2.00 eV)	1.96 eV	$1.86 \pm 0.06 \text{ eV}$
PA(Fl)	221 kcal mol ⁻¹ (B3-LYP/6-311++G(d) 215kcal mol ⁻¹)		225.5 ± 2.2 kcal mol ⁻¹
PA(Fl⁻)	332 kcal mol ⁻¹	322 kcal mol ⁻¹	332 ± 3.2 kcal mol ⁻¹
D(Fl-H)	54.8 kcal mol ⁻¹	54.2 kcal mol ⁻¹	59.7 ± 2.2 kcal mol ⁻¹ (60.6 ± 2.4 kcal mol ⁻¹)
IP(FlH)	6.38 eV		$6.40 \pm 0.10 \text{ eV}$

Measured and Computed Properties of Redox Forms of Lumiflavin

a) Theoretical numbers correspond to 0 K.

b) Present Results

c) Hadad, et al. JACS **124**, 7226(2002)

d) Experimental measurements at 298 K.

e) Anderson, Biochem. Biophys. Acta 722, 158(1983).

Iron Tetraphenyl-porphyrin Series

X, Y, Z	Symbol used in this work
X = H, Y = C ₆ H ₅ , No Z	FeTPP
$X = H, Y = C_6H_5, Z = Cl$	FeTPPC1
X = H, Y = C ₆ F ₅ , No Z	FeTPPF ₂₀
$X = H, Y = C_6F_5, Z = Cl$	FeTPPF ₂₀ Cl
$X = Cl, Y = C_6F_5$, No Z	FeTPPF ₂₀ Cl ₈
$X = Cl, Y = C_6F_5, Z = Cl$	FeTPPF ₂₀ Cl ₉

Fluoroalkyl Series

X, Y, Z	Symbol used in this work
X = Y = H, No Z	FeP
X = Y = H, Z=Cl	FePCl
$X = H, Y = CF_3,$ $Z = Cl$	FeP(CF ₃) ₄ Cl
$X = H, Y = C_3 F_7, Z$ $= Cl$	$FeP(C_3F_7)_4Cl$

Octaethyl Series

X, Y, Z	Symbol used in this work
$X = C_2 H_5,$ Y = H, No Z	FeOEP
$X = C_2H_5,$ Y = H, Z = Cl	FeOEPCl
$X = C_2H_5,$ $Y = NO_2,$ Z = Cl	FeOEP(NO ₂) ₄ Cl

Electron Affinity Ladder

Compound		EA (eV)
TCNE		[3.17]
Fe(OEP)(NO ₂) ₄ Cl		2.93
F ₄ -BQ		[2.70]
Fe(OEP)(NO ₂) ₂ Cl	<u>↓</u>	2.54
Fe(OEP)(O)Cl		2.53
2,6-Cl ₂ BQ	↓↓	[2.48]
NO ₂		[2.29]
Fe(OEP)Cl	X	2.07
4-NO ₂ NB		[2.00]
BQ		[1.91]
NPQ		[1.81]
Fe(OEP)	↓	1.68
3-NO ₂ NB	¥	[1.65]

An Iron (II) Porphyrin (FeTPPF20) with C4v Symmetry

Figure 6.3 Addition of an Electron to

the d_{π} Orbitals of FeTPP

Dmol program, geometry optimized, BPW functionals, DNP basis set with "frozen" core potentials

Figure 6.1 Addition of an Electron to

the d_{π} Orbitals of FeP(CF₃)₄Cl

Dmol program, geometry optimized, BPW functionals, DNP basis set with "frozen" core potentials

Molecule	Charge	Fe-N (Å)	Fe-Cl (Å)	Fe-N ₄ plane (Å)	
FeP(CF ₃) ₄ Cl	Neutral	2.0064	2.1727	0.1333	
	Anion	2.0022	2.2538	0.0685	
$FeP(C_2F_5)_4Cl$	Neutral	2.0121	2.1714	0.1603	
	Anion	2.0088	2.2447	0.0978	
FeP(C ₃ F ₇) ₄ Cl	Neutral	2.0121	2.1672	0.1823	
	Anion	2.0102	2.2376	0.1163	

Distances for Spin Unrestricted C_{4v} Fluoroalkyl Series

Bond Lengths from X-ray Diffraction for Tetraphenyl Series [Present Results]

[Molecule	Fe-N (Å)	Fe-Cl (Å)	Fe-N4plane (Å)
FeTPP	1.972(4) ^[1] , [1.9846 ^a]	N/A	
FeTPPCl	2.049(9) ^[ii] , [1.9902 ^a]	2.192(12) ^[iii] [, [2.1812 ^a]	0.383(5) ^[ii] , [0.2200 ^a]
FeTPPF ₂₀ Cl	2.062(8) ^[iii] , [1.9962 ^a]	2.199(2) ^[iii] , [2.1675 ^a]	0.449(3) ^[iii] , [0.1906 ^a]

a: Present spin unrestricted results for C_{4v} structures.

- iii. J. L. Hoard, G. H. Cohen, M. D. Glick, J. Am. Chem. Soc., 1967, 89, 1992.
- iii. B. Song, D. C. Swenson, H. M. Goff, *Acta Crys. Sect C.*, Volume 54, Part 11 (November 1998), cif-access (metal-organic compounds). IUC9800058.

^{[].} J.P. Collman, J. L. Hoard, N. Kim, G. Lang, C. A. Reed, J. Am. Chem. Soc., 1975, 97, 2676.

Electron Affinities(eV)

Molecule	Electron Affinity (DFT)	Electron Affinity (Exp)
FeOEP	1.7557	1.68±0.03
FeTPP	2.134	1.87±0.03
FeOEPC1	2.2724	2.07±0.03
FeTPPC1	2.4704	2.15±0.15
FeTPPF ₂₀	2.9887	2.15±0.15
FeTPPF ₂₀ Cl	3.3162	3.14±0.03
FeP(CF ₃) ₄ Cl	3.363	3.16±0.03
$FeP(C_3F_7)_4Cl$	3.5151	3.30±0.03

IR Spectra of Gas Phase Ions

- Absorption spectroscopy inaccessible
- Multiphoton IR photodissociation possible
- IRMPD spectrum reflects absorption spectrum
- Candidate ions: Mn(CO)_m^{+/-},
 M_n(CO)_m(alkane)⁺, M_n(CO)_m(O₂)^{+/-}, etc.
- Requires tunable IR laser

Free Electron Laser for Infrared eXperiments "FELIX"

Principles of FTICR-MS

-charged particles trapped by strong, homogeneous magnetic field B (Lorentz force)

- particles orbit magnetic field with frequency dependent only on m/z (for fixed B)
- trapped particles are confined axially by small static voltage to trapping plates (T)
- applying RF to excite plates (E) at cyclotron frequency bunches ions and expands their orbital radii, improving dynamic range \rightarrow also used to eject unwanted ions

- current induced by moving ions is detected (D) and amplified in time domain, then Fourier Transformed to obtain frequencies of trapped ions

Cyclotron frequency $f \sim Bz/m$

IR mirror Flange with electrical feedthroughs

Anionic Metal Carbonyl Clustering Reactions

Wronka and Ridge

J. Am. Chem. Soc., Vol. 106, No. 1, 1984 69

SORI up to higher masses

• By adding additional frequencies to the SORI excitation pulse, larger and larger cluster can be synthesized

- In each case, a large percentage (40-100%) of the ion population is transferred into the target mass channel
- Spectra show a blue shift with increasing size, converging to a value around 2000 cm⁻¹

• Structure in spectrum also disappears with increasing size -- indication of transition from organometallic complexes to metal-cluster-adsorbate systems?

Normalized depletion

Acknowledgments

Delaware	
Scott Robinson	
David Finneran	
Richard Ochran	
Jim Witkoski	
Nganha Luu	
Ounan Chen	
Jennifer Sterner	
Steve Bennett	
Lei Jin	
Tianlan Zhang	
Fred Arnold	
Henglong Chen	
Karl Sohlberg	
Hung-Yu Lin	

NHFML & FOM (Utrecht) **David Moore** John Eyler NIST Michelle Byrd Charles Guttman University of Oslo Einaar Uggerud Dag Ekeberg Bruker Instruments Gary Kruppa

Rhone-Poulenc Rorer Runzhi Zhao **Robert McKean** Stephen Conlon Sun Company Jim Lyons Paul Ellis **Tilak Wijesekera** Funds NSF Sun RPR

NIST

Acknowledgements

<u>Delaware</u> Scott Robinson David Finneran HeeYeon Park Richard Ochran Tom Bailey Nganha Luu Ounan Chen **Steve Bennett** Jennifer Sterner Lei Jin Fred Arnold Tianlan Zhang Henglong Chen

Delaware (contd)
Robin Kinser
Hung Yu Lin
Yi Lin
Ying Pan
Barbara Larsen
Fred Strobel
John Wronka
Gary Kruppa
Thuy Nguyen
Art Smith
Rob Freas
Gary Weddle
Dana Chattalier
Tom Dietz
John Allison

Rhone-Poulenc Rorer
Runzhi Zhao
Robert McKean
Steve Conlon
<u>Sun Company</u>
Jim Lyons
Paul Ellis
NHFML & FOM
John Eyler
David Moore

			<u> </u>	ARGEA 50	Dence		1	1	
Ref Cmpd	+8	+7	+6	+5	+4	+3	+2	+1	PA (kcal/mol)
Benzene									180.9
Methanol									181.9
Ethanol									188.1
n-Butanol				1					191.0
1.4 Dioxane									193.8
Acetone				1					196.7
Ethyl Ether		N							200.2
n-Butyl Ether		Y	2						203.7
Isopropyl Ether			N						206.0
Pyrrole	1		Y	N					207.6
2-Fluoro- pyridine				Y					210.6
DMF					N				211.4
Pyridine					Y				220.8
2-Methoxy- pyridine									221.9
3,5 Lutidine						N			225.5
2,6 Lutidine						Y			228.2
Triethyl- amine									232.3
Tributyl- amine							N	N	235.4

Charge State

Methods

- SORI-CID and ECD were performed on a All samples were dissolved to 5 µM in 50:50 MeOH:water, 1% acetic acid
- Bruker Apex 4.7T instrument
- IRMPD experiments were performed on a Bruker Apex 3T instrument
SORI-CID

- Cleavage observed at 25 of 30 backbone positions
- Produced 7 a, 19 b, 5 c, 2 x, 13 y, and 16 z ions
- No cleavage observed within the lactam bridge

ECD (Ar Cooling Gas)

ECD (Ar Cooling Gas)

ECD (Ar Cooling Gas)

- Cleavage observed at 16 of 30 backbone positions
- Produced mostly *c* and *z* ions (1 *a*, 1 *b*, 13 *c*, 1 *x*, 7 *z*)
- No cleavage observed within the lactam bridge

ECD: A Non-selective Technique?

- ECD w/ Ar: Cleavage between His-9 and Asn-10 accounted for 29.8% of the total normalized ion abundance
- ECD w/ SF₆: Cleavage after **His**-9 = 29.4%

Major Products

- Peptide Bond #9
 - Only site where reverse products (a, y, c, z) are observed
 - Is there an explanation in the structure?

ECD (SF₆) Cooling Gas

- Cleavage observed at 21 of 30 backbone positions
- Produced 2 *a*, 14 *c*, 1 *x*, 4 *y*, 13 *z*
- No cleavage observed within the lactam bridge

Polyolefin Mass Spectrometry - Importance

- Polyethylene (PE) & polypropylene (PP)
 - Large production volume and fast growth
 - •New metallocene catalysts produce new polyolefin types
 - NIST provides saturated polyolefin standards
- Central Challenge in PE/PP mass spectrometry
 - Polymer functionality for cationization absent
 - •Masses over ~ 2000 u cannot be determined
 - Creating an intact, gas-phase macromolecular ion

New Approach -η⁵-Cyclopentadienylcobalt Ion (CpCo⁺)

CpCo⁺⁺ ion shows favorable reactivity toward low mass alkanes. $CpCo^{++} + C_nH_{2n+2} \rightarrow mH_2 \rightarrow CpCoC_nH_{2n-2m+2}$

- predominant dehydrogenation product
- little fragmentation in MS

Müller & Goll '73, Jacobson & Freiser '85, & Ekeberg, Ridge, *et al.* '99

Double Dehydrogenation Dominates All Three Reactions

Byrd, Ridge & Guttman, J. Am. Chem. Soc. Mass Spectrom. 2003, 14, 51-57.

Structures of Flavins

Distances for Spin Unrestricted C4v Tetraphenyl Series

Molecule	Charge	Fe-N (Å)	Fe-Cl (Å)	Fe-N ₄ plane (Å)
FeTPP	Neutral	1.9846	N/A	0.0093
	Anion	1.9856	N/A	0.0040
FeTPPCl	Neutral	1.9902	2.1816	0.2200
	Anion	1.9868	2.2496	0.1300
FeTPPF ₂₀	Neutral	1.9914	N/A	0.0116
	Anion	1.9889	N/A	0.0109
FeTPPF ₂₀ Cl	Neutral	1.9962	2.1675	0.1906
	Anion	1.9945	2.2400	0.1239

Distances for Spin Unrestricted C _{4v} Octaethyl Series							
Molecule	Charge	Fe-N (Å)	Fe-Cl (Å)	Fe-N ₄ plane (Å)			
FeOEP	Neutral	1.9906	N/A	0.0008			
	Anion	1.9898	N/A	0.0007			
FeOEPCl	Neutral	1.9893	2.2271	0.1593			
	Anion	1.9898	2.264	0.1241			
FeOEP(NO ₂) ₄ Cl	Neutral	2.0377	2.1695	0.2061			
	Anion	2.0326	2.2403	0.1064			

IR M PD spectra of anionic iron carbonyl clusters

Theoretical spectrum from Schaefer's calculations for D2h unbridged structure. Frequencies lowered by 46 cm-1.

Theoretical spectrum from Schaefer's calculations for a dibridged C2h structure. Average lowered by 57 cm-1. Imported from Excel plot

1. Xie, Schaefer and King, JACS, 122, 8746(2000)

FIG. 3. ESI-FTICR spectrum of a mixture of ubiquitin, cytochrome c and myoglobin. U, ubiquitin peaks; C, cytochrome c peaks; M, apomyoglobin peaks; *, noise spike. Additional peaks due to sodium and phosphate adducts are present. Inset: Expansion of the +15 charge state region of cytochrome c. I, monoisotopic peak.

"The goddammed mass spectrometer is broken again!" (title by Frank Field)

Electron Capture Dissociation of Human Parathyroid Hormone

A comparison with common fragmentation techniques and selective cleavage at histidine

Human Parathyroid Hormone (hPTH)

- 84 amino acid protein that regulates calcium levels in blood
- Mild to moderate hyperthyroidism results in increased bone density
- Treatment with the amino portion of hPTH (amino acids 1-34) promotes bone formation

Notes:

The calculated curve was generated by convoluting the stick spectrum with a 12 cm⁻¹ gaussian lineshape. The fitted widths for the two peaks in the experimental spectrum are ~15 and ~10 cm⁻¹. Forcing them to be 12 cm⁻¹ does not significantly alter the fit, other than to make the areas of the peaks more similar.

The calculated frequencies are unscaled, but the "optimal" factor is ~0.97, which I find quite reasonable, particularly since the basis set used an ECP (effective core potential). Also, this scaling makes the splittings more similar (9 cm⁻¹ and 12 cm⁻¹ for the expt. and calc, repsectively.)

