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Vanadium haloperoxidases (VHPO) catalyze the peroxidative
halogenation of organic substrates. Crystallographic studies suggest
that hydrogen bonding from a lysine side chain to the vanadium(V)-
bound peroxo group may facilitate oxidation of halides (Cl-, Br-,
I-). A ligand with pendant NH2 functionality, N-(2-pyridylmethyl-
6-amino) iminodiacetic acid (H2

NH2pyg2‚2HCl) has been designed
to explore the effects that H-bonding from Lys may have on
peroxide activation. The first structural characterization of VBrPO
model complexes [VO(O2)(NH2pyg2)]K and [VO(O2)(BrNH2pyg2)]K
which demonstrate direct intramolecular H-bonding between an
amine functionality and V(V)-bound peroxide is reported. The
distances between NH2 proton and bound peroxo moiety {(d(N(1)−
H‚‚‚O): 2.637(4) Å in [VO(O2)(NH2pyg2)]K, and 2.640(8) and
2.6919(8) Å in [VO(O2)(BrNH2pyg2)]K} are indicative of intramolecu-
lar H-bonding. The intramolecular H-bond strength in [VO(O2)-
(BrNH2pyg2)]- is estimated at 6 kcal/mol by 1H NMR studies and
demonstrates that the H-bond interaction is also significant in
solution.

Vanadium haloperoxidases (VHPO), found in marine
algae, lichens, and certain terrestrial fungi, catalyze the
halogenation (Cl, Br, I) of organic substrates or the halide-
assisted disproportionation of hydrogen peroxide (Scheme
1).1 The X-ray structures of vanadium chloroperoxidase from
CurVularia inaequalis2 and the vanadium bromoperoxidases
from Corallina officinalis3 andAscophyllum nodosum4 reveal
that the vanadium active site resembles vanadate (HVO4

2-)
that is coordinated to the protein by one histidine residue in
a trigonal bipyramidal geometry (structure a, Scheme 1). The
histidine which directly binds V(V) and the amino acids
involved in H-bonding to the vanadate oxygen atoms are

conserved. Structural characterization of vanadium chloro-
peroxidase (VClPO) fromC. inaequalisin the presence of
H2O2 demonstrates that vanadium(V) is coordinated axially
by a terminal oxo group, and equatorially by peroxide,
histidine, and an oxide ligand, in a square pyramidal
geometry (structure b, Scheme 1).5 In light of the importance
of H-bonding in the regulation of metal ion reactivity,6 a
striking feature at the active site of VClPO is the apparent
2.76 Å H-bond between Lys353 and the bound peroxide.
Although peroxo derivatives of vanadium bromoperoxidases
(VBrPO) have not yet been structurally characterized, the
conserved amino acid residues found at the active sites of
V-BrPO’s (C. officinalis andA. nodosum) suggest that the
redundant Lys residues (Lys398, Lys349, respectively) are also
in positions to H-bond to a V(V)-peroxo moiety in VBr-
PO’s.

Mechanistic studies of VHPO and VHPO model com-
plexes suggest that peroxide activation may be achieved by
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Scheme 1. Proposed Catalytic Cycle for VHPO
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protonation of the V(V)-bound peroxo group to generate a
side-on bound hydroperoxide complex.5 It has been proposed
that an increase in positive charge on Operoxo, by protonation,
makes attack by halide more favorable.7,8 To explore the
effects that H-bonding from Lys may have on peroxide
activation, we have designed the ligandN-(2-pyridylmethyl-
6-amino) iminodiacetic acid, (H2NH2pyg2), with pendant NH2
functionality.9 We report the first structural characterization
of VBrPO model complexes which demonstrate significant
intramolecular H-bonding between a pendant amine func-
tionality and V(V)-bound peroxide (Figure 1).10

[VO(O2)(NH2pyg2)]K is obtained by adding H2NH2pyg2‚2HCl
to an aqueous slurry of KVO3, followed by addition of H2O2

at pH 4 (Scheme 2i). In the presence of Br- a bromoper-
oxidase type reaction occurs, giving [VO(O2)(BrNH2pyg2)]K,

in which the pyridine ring is brominated para to the amine
moiety (Scheme 2ii).11,12 The molecular structures of [VO-
(O2)(NH2pyg2)]K13 and [VO(O2)(BrNH2pyg2)]K resemble those
of other V(V)-peroxo complexes which are coordinated by
tripodal, tetradentate amine ligands.7 Both complexes have
pentagonal bipyramidal structures with axial carboxylate O(4)
and terminal oxo ligands. Peroxide binds symmetrically in
the equatorial plane in a side-on fashion, with bond lengths
typical for V(V)-oxo-monoperoxo complexes (d(V-
Operoxo) ca. 1.87 Å).15 The distances between the amine
nitrogen and bound peroxo moiety are indicative of intramo-
lecular H-bonding:d(N(1)-H‚‚‚O(7))) 2.637(4) Å in [VO-
(O2)(NH2pyg2)]K; andd(N(1)-H‚‚‚O(7))) 2.640(8),d(N(1)-
H‚‚‚O(14))) 2.62 Å in [VO(O2)(BrNH2pyg2)]K. It is noteworthy
that the LysN353-O(peroxo) bond length of 2.67 Å (C.
inaequalis) is nearly the same.

To our knowledge [VO(O2)(NH2pyg2)]K and [VO(O2)-
(BrNH2pyg2)]K are the first models of VHPO’s in which a
direct intramolecular H-bond bridges an amine proton and a
vanadium-peroxo moiety.16 Variable-temperature1H NMR
was used to investigate the integrity of the H-bonding (Figure
2).17 At room temperature the NH2 protons in both complexes
appear as a broad singlet, indicating that the protons are in
rapid exchange between the two possible environments
exemplified by their solid-state structures. At lower temper-
atures the proton resonances diverge into two sharper singlets,
one moving upfield and the other downfield, indicating that
the latter proton is deshielded as a result of its interaction
with the peroxo oxygen O(7).18 In the case of [VO(O2)-
(BrNH2pyg2)]K the NH2 protons (6.5 and 8.0 ppm at 233 K)
coalesce atca. 283 K (500 MHz), corresponding to a∆G*

value of 12.4 kcal/mol for rotation about the C-N bond. If
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Figure 1. ORTEP views of [VO(O2)(NH2pyg2)]- (i) and [VO(O2)-
(BrNH2pyg2)]- (ii). Only NH2 protons are shown for clarity. Selected bond
lengths (Å) and angles (deg) for i: V-O(5) 1.608(2), V-O(6) 1.859(2),
V-O(7) 1.880(2), O(6)-O(7) 1.419(2), N(1)-H‚‚‚O(7) 2.637(4); O(5)-
V(1)-N(2) 93.54(7), O(5)-V(1)-O(4) 166.30(7), O(5)-V(1)-O(7) 102.13-
(7), O(5)-V(1)-O(6) 104.16, O(6)-V(1)-O(7) 44.61(8), N(1)-H-O(7)
144(3). For complex 1 of ii:14 V(1)-O(5) 1.605(4), V(1)-O(6) 1.868(4),
V(1)-O(7) 1.883(4), O(6)-O(7) 1.429(6), N(1)-H‚‚‚O(7) 2.640(8), N(1)-
H‚‚‚O(9) 3.16; O(5)-V(1)-N(2) 91.5(2), O(5)-V(1)-O(4) 165.1(2),
O(5)-V(1)-O(7) 103.1(2), O(5)-V(1)-O(6) 104.9(2), O(6)-V(1)-O(7)
44.8(2), N(1)-H‚‚‚O(7) 125(4), N(1)-H‚‚‚O(9) 156.

Scheme 2 a

a (i) KVO3, H2O2; (ii) KVO 3, H2O2, KBr.
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the intrinsic barrier to rotation of an amino group bound to
an aromatic ring, ca. 6 kcal/mol,19 is subtracted from the
calculated∆G, then an H-bond strength of 6.4 kcal/mol can
be estimated for [VO(O2)(BrNH2pyg2)]K. This value is well

within the range typical for H-bond strengths reported in the
literature (2-10 kcal/mol).20 Further investigations are in
progress.

In summary, we have synthesized and structurally char-
acterized complexes which demonstrate intramolecular H-
bonding between amine and vanadium(V)-bound peroxide.
The intramolecular H-bond strength in [VO(O2)(BrNH2pyg2)]-

is estimated at 6 kcal/mol by1H NMR studies and demon-
strates that the H-bond interaction is significant. As such
these complexes mimic the direct H-bond between Lys353

and the peroxo moiety in VClPO (C. inaequalis) and further
support the notion that similar H-bonding occurs in VBrPO’s.
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Figure 2. 1H VT NMR of [VO(O2)(BrNH2pyg2)]- in CD3CN, showing
pyridine region. NH2 protons diverge: from bottom to top atT ) (a) 303,
(b) 283, and (c) 233 K.

COMMUNICATION

Inorganic Chemistry, Vol. 41, No. 2, 2002 163


