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ABSTRACT: The nuclear magnetic resonance (NMR) spin relaxation rate constant in the
rotating frame of reference R1� provides information on microsecond to millisecond (�s-ms)
timescale kinetic processes that stochastically modulate the resonance frequencies of
nuclear spins in molecules. Expressions for R1� are presented for two-site chemical ex-
change using both the conventional perturbation approach for evolution of the density
operator in the interaction frame of reference and the stochastic Liouville equation (SLE) for
evolution of the average density operator in the rotating frame of reference. The former
approach is limited to the fast-exchange regime, in which the chemical exchange kinetics
are faster than the frequency difference between spins in the two sites. The latter approach
provides approximate expressions for R1� that are accurate when chemical exchange is not
fast. Expressions for R1� that are accurate over the widest range of experimental conditions
facilitate the interpretation of chemical exchange phenomena. © 2003 Wiley Periodicals, Inc.
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INTRODUCTION

Nuclear magnetic resonance (NMR) is a particularly
useful technique for studying the dynamics of mole-
cules over a wide range of timescales (1–4). Numer-
ous relaxation measurements are sensitive to motions
on the ps-ns timescale and thus provide valuable
information on the microdynamics of biological mac-
romolecules such as proteins (5 ). Moreover, dedi-
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cated experiments, including R1� and R2 relaxation
measurements, are sensitive to molecular motions or
kinetics occurring on a much slower timescale, in the
microsecond to millisecond (�s-ms) range (5 ). Inter-
pretation of data for R1�, R2, and related experiments
that probe �s-ms timescales require a model for both
relaxation and exchange processes against which the
acquired data can be fitted. Two approaches have
been used to tackle this problem. The most wide-
spread approach, and the first method proposed his-
torically, postulates the independance of both phe-
nomena. Consequently, a model for chemical
exchange is superimposed to the dynamic equations
accounting for evolution of the spin system (including
relaxation). This approach led to the celebrated
Bloch-McConnell equations (6 ). These equations can
not treat spin systems for which the chemical ex-
change process alters scalar coupling constants; in-
stead, a density operator treatment is required in such
instances. Nonetheless, the basic idea used in the
density operator approach is conceptually similar to
the Bloch-McConnell equations because a master
equation of the Redfield type is combined with a
given model for exchange (7 ). A second approach,
initiated by Wennerström (8 ), combines relaxation
and exchange processes in the relaxation superopera-
tor as given by Abragam (9). Therefore, both pro-
cesses are treated at the same level, but the range of
validity of this approach is restricted to the so-called
fast-exchange regime.

This study reviews some general theoretical as-
pects pertaining to the description of chemical ex-
change and to effect chemical exchange on relaxation
measurements. Application of the stochastic Liouville
equation (SLE) to R1� relaxation experiments will be
emphasized. The relaxation rate constant R1� charac-
terizes the decay of magnetization spin locked along
the direction of the effective magnetic field in the
rotating frame of reference for a spin system under-
going radio-frequency (RF) irradiation. Recently, R1�

experiments have been developed to elucidate in-
tramolecular conformational changes, ligand binding,
and folding of proteins and other biological macro-
molecules (5 ). In these experiments, the dependence
of R1� on the amplitude and frequency of the RF field
is used to determine the rate constants, site popula-
tions, and Larmor frequencies for nuclear spins af-
fected by the kinetic process (5 ). Analytical expres-
sions for R1� that reproduce experimental results over
the largest possible range of parameters are desirable
both for analysis of data and for physical insight (10,
11). The SLE is a convenient way to describe the
dynamics of a system driven by a stochastic process,
such as chemical exchange, without restriction to par-

ticular timescales. A derivation of the SLE will be
given and specialized to the case, important in prac-
tice, of a Markov sudden jump process, which is
commonly used in the description of chemical ex-
change. Then, reviewing recent results (11, 12), a
Laplace transform approach will be used to obtain an
approximate solution for the evolution of the average
density operator ���(t). The special case of two-site
exchange will be emphasized and new analytical ap-
proximate expressions that have been obtained re-
cently will be outlined (11, 12). For the sake of
clarity, some aspects of the Wennerström theory (8 )
will be recalled and the analytical formula for R1� will
be obtained following this approach (13) and will be
given for comparison.

A STOCHASTIC JUMP MODEL FOR
CHEMICAL EXCHANGE

The description of the evolution of a spin system
subject to chemical exchange can be approached from
two different standpoints, which are very different in
essence. One is a macroscopic approach, introduced
by Gutowsky (14) and generalized by McConnell (6 ).
The other is based on the theory as developed by
Kubo (15) to describe the evolution of a magnetic
moment in which its resonance frequency jumps be-
tween N different values, �1, . . . , �N. This latter
approach is somewhat generalized here in the case of
a spin system that can be described by a Hamiltonian
�(t) stochastically modulated by a jump process.

Description of a Markov Jump Process

The stochastic process used to describe chemical ex-
change commonly is assumed to be a Markov jump
process. Thus, the stochastic variable � (which may
encompass the Larmor resonance frequency �0 as
well as the relaxation rate constants R1 and R2, for
instance) takes N values � � �1, . . . , �N and is
characterized by a transition probability between
states that does not depend on previous history. For a
particular realization of the stochastic process, the
variable � takes n different values �k at times tk: (�n,
tn; �n�1, tn�1; . . . �1, t1). The Markov property, i.e.,
the absence of memory of the process, is expressed by

P	�n, tn��n�1, tn�1; · · · �1, t1
 � P	�n, tn��n�1, tn�1


[1]

where P(�n, tn��n�, tn�) is the probability for the
process being in state �n at time tn given that it was in
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state �n� at time tn� and is denoted Pnn�. Such a
process obeys the so-called Chapman-Kolmogorov
equation (16):

Pkj 	t
 � �
m

Pkm 	h
Pmj 	t � h
 [2]

where Pkj (t) is the transition probability from state j
to state k. The following assumptions are made con-
cerning these transition probabilities (17):

Pkj 	t
 � �kj t � o	t
 [3]

Pjj 	t
 � 1 � �j t � o	t
 [4]

�j � �
k

�kj [5]

and �jj � 0 by definition. Equation [2] can be written
as

Pkj 	t
 � �
m,mk

	�kmh � o	h

Pmj 	t � h


� 	1 � �kh � o	h

Pkj 	t � h
 [6]

where o(h))/h 3 0 for h 3 0. The Kolmogorov
differential equation is obtained from Eq. [6] by
grouping the terms in Pkj (t), dividing by h, and
taking the limit h 3 0:

d

dt
Pkj 	t
 � �

m

�kmPmj 	t
 � �k Pkj 	t
 [7]

This can be expressed as a master equation for the
vector of transition probabilities:

d

dt
P � �P, [8]

where �kj � �kj, �jj � ��j, and P � [P1l(t),
P2l(t), . . . , PNl(t)]t. From the foregoing definitions,
the probability that no jump takes place during time t
while the system is in site i is

e��it [9]

while the probability that a jump occurs from site i to
site j between t and t � dt is given by

�jie
��itdt [10]

Derivation of the SLE

The evolution of the spin density operator is given by
the Liouville equation (18):

d

dt
�	t
��i�	t
�	t
 [11]

where �(t) is the Liouvillian operator, which is sto-
chastically modulated by the jump process. The aver-
age evolution operator for the density matrix �(t) is
calculated by

U	t
� �exp��i �
0

t

�	t�
dt��� [12]

Suppose that starting initially in site i0 at time t0 the
stochastic jumps occur in a particular sequence at
times t1, t2, . . . , tk�1, tk, where they take the values
(i1, i2, . . . , ik�1, i), respectively, with ij � 1, . . . ,
N. Using the same foregoing notation, the evolution
of the spins thus is given by

U	t0; t1; t2, . . . , tk; t
�	t0


� e��i	t�tk
exp	�i�i	t � tk



�i,ik�1e
��ik�1	tk�tk�1
exp	�i�ik�1	tk � tk�1

 · · ·

�i2i1e
��i1	t2�t1
exp	�i�i1	t2 � t1



�i1i0e
��i0	t1�t0
exp	�i�i0	t1 � t0

�	t0
dtk · · · dt1 [13]

The partial average of the density operator �̃i(t) such
that the � is in state i at time t and averaged over all
realizations and initial conditions i0 is given by

�̃i	t
� �
i0
��ii0e

��i0	t�t0
U	t; t0
)�	t0
� �
k�1

� �
i1,i2, . . . ,ik�1�1

N

� �
t0

t

dtk �
t0

tk

dtk�1· · ·�
t0

t2

dt1e
��i	t�tk
Uik

	t; tk


� �i,ik�1e
��ik�1	tk�tk�1
Uik�1	tk; tk�1
 · · ·

�i2i1e
��i1	t2�t1
Ui1	t2; t1
�i1i0e

��i0	t1�t0
Ui0	t1; t0
�	0
pi0	
[14]
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in which the notation Uik
(tk�1; tk) � exp(�i�ik

(tk�1 � tk)) has been introduced and pk is the popu-
lation of site k. This very complicated expression
gives the formal solution of the SLE.

The differential form of Eq. [14] is more amenable
in the present context. The differential equation is
derived by considering the evolution of one of the
Uk’s in the short time interval (t � h, t). The
evolution under �k is given by

Uk	t
� exp	�i�kh
 �
j

Pkj	h
Uj	t � h
 [15]

For small h this can be written

Uk	t
� 	1 � i�kh

 �
j, jk

Pkj	h
Uj	t � h


� Pkk	h
Uk	t � h
� [16]

Using Eqs. [3] and [4]:

Uk	t
� 	1 � i�kh

�
j

	�kjh � o	h

Uj	t � h


� 	1 � �kh � o	h

Uk	t � h
� [17]

which can be expressed as

Uk	t
� Uk	t � h
� 	�i�k � �k
Uk	t � h
h

� �
j

Uj	t � h
�kjh � o	h
 [18]

Finally, dividing by h and taking the limit h 3 0, the
differential equation obeyed by the matrices Uk is
obtained:

d

dt
Uk	t
� 	�i�k � �k
Uk	t
� �

j

�kjUj	t
 [19]

Equation [19] actually is a system of N matrix differ-
ential equations. Thus, solving Eq. [19] amounts to
solving a matrix differential system of size N � M,
where M is the size of the Liouvillian �. Introducing
the direct product of the spin space and the site space
(probability space), Eq. [19] can be recast in the form:

d

dt
U	t
� 	� � �
U	t
 [20]

The operators � and � of Eq. [20] are defined as

� � �
L	�1
 0 · · · 0

0 L	�2
 · · · 0
0 0 · · · 0
0 0 0 L	�N


� � �
i�1,N

Pi � L	�i


[21]

� � � � 1spin [22]

The notation L(�k) � �i�k was introduced and Pi is
the projector onto the state corresponding to the value
� � �i:

�Pi�mn � �im�in [23]

1spin is the identity matrix of dimension M � M
acting on the Hilbert space of the spins.

To continue, the average density matrix ���(t) is
introduced as

���	t
� �
k�1

N

�̃k	t
 [24]

where �̃(t) � (�̃1(t), �̃2(t), . . . , �̃N(t))t. Following
the foregoing notation, each �̃k(t) represents a density
matrix with value � � �k of the stochastic variable at
time t. Therefore, �̃(t) also obeys the same evolution
equation as the corresponding evolution operator U in
Eq. [20]:

d

dt
�̃	t
� 	� � �
�̃	t
 [25]

This equation is very general and applies to a broad
range of problems. In fact, any stochastic process
consisting of instantaneous Markovian jumps during
which the state of the spins remains unchanged can be
treated in this manner. The Liouvillian also can be
redefined as

� 3 � � i�̂ [26]

so as to include the relaxation superoperator �̂ (18).
In the simple case where the spin dynamics can be
described by the phenomenological Bloch equations
for the macroscopic magnetization, Eq. [25] reduces
to the Bloch-McConnell equations (6 ). Finally, the
stochastic variable �, generally is associated with the
resonance frequency, but it also can be defined as a set
of totally correlated random variables. For instance, if
each site is associated with different resonance fre-
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quency and relaxation rate constants, then � should be
defined as the set of parameters {�0, R1, R2, . . .}.

A BRIEF SURVEY OF A MICROSCOPIC
APPROACH TO EXCHANGE

In the preceding section, the problem of chemical
exchange in NMR was approached by considering the
evolution of the density operator subject to random
modulation of the resonance frequency. Relaxation
and chemical exchange were introduced indepen-
dantly in a phenomenological way by superimposing
a master equation describing the evolution of the spin
system with the exchange jump process to yield the
SLE. An alternative approach was introduced by
Wennerström (8 ), based on the perturbative analysis
of spin relaxation as presented by Abragam (9), and
applied by others to the study of R1� (13, 19). In this
method, the evolution of a spin system that undergoes
both random coupling with the lattice and chemical
exchange is treated by considering the elementary
coupling and exchange processes on an equal footing.

The use of this approach for R1� relaxation will be
outlined in order to provide results for comparison
with solutions of the SLE to be presented. First,
relaxation will be considered in the absence of chem-
ical exchange, but in the presence of an applied RF
field (20, 21, 22). Relaxation will be calculated for
spin operators in a tilted rotating frame in which its
z-axis is aligned along the direction of the effective
field in the rotating frame. Subsequently, this result
will be extended to include chemical exchange.

The master equation describing the relaxation of
the density operator in the interaction frame �‡(t) is
(9, 23)

d

dt
�‡	t
��

1

2 �
��

��

��1
‡	t
, ��1

‡	t � �
, �‡	t
� �0
‡��d�

[27]

in which �1
‡(t) is the interaction frame representation

of the time-dependent stochastic part of the Hamilto-
nian and satisfies �1(t) � 0. The laboratory frame
Hamiltonian is

�	t
 � �0 � �RF	t
� �1	t
� �0 � �RF	t


� �
q��2

2 �
p

F 2
q	t
A2p

q [28]

in which �RF(t) is the RF Hamiltonian, and F2
q(t) and

A2p
q are the spatial and spin tensor components of the

stochastic interactions that couple the spin system to
the lattice (9, 23). The spin tensor operators are cho-
sen to satisfy the condition �RF ¥i�1

n [Izi, A2p
q ] �

�p
qA2p

q , so that

exp
i�RF t �
i

Izi�A2p
q exp��i�RF t �

i

Izi�

� A2p
q exp�i�p

qt� [29]

In these equations, �RF is the angular frequency of the
applied RF field, and the sum extends over n nuclear
spins. Consequently, homonuclear spins are treated as
like spins (23). In the rotating frame,

�̃	t
 � �
i

�iIzi � �1 �
i

Ixi � �̃1	t


� �
i

�iIzi � �1 �
i

Ixi � �
p,q

F 2
q	t
A2p

q exp�i�p
qt�

[30]

in which the applied B1 field is assumed to have x
phase and amplitude (defined by the Rabi frequency)
�1 � ��B1, �i � �0i � �RF is the resonance
offset, and �0i is the Larmor frequency of the ith spin.
Next, U is defined as the unitary transformation from
the rotating frame to the frame in which its z-axis is
aligned along the effective field direction. In this
instance, the Hamiltonian ��(t) expressed in the
tilted frame is related to �̃(t) by ��(t) � U�̃(t)U�1,
where

U � exp
i �
i

�iIyi� [31]

and the tilt angle in the rotating frame for the ith
nuclear spin is tan �i � �1/�i. In the tilted rotating
frame,

��	t
 � �
i

�eiI�zi � �
p,q

F2
p	t
UA2p

q U�1exp�i�p
qt�

[32]

in which �ei � (�i
2 � �1

2)1/ 2.
The fluctuating part of the Hamiltonian in the

interaction representation �1
‡(t) is given by
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�1
‡	t
 � exp
i �

i

�eiIzit���1	t
exp
�i �
i

�eiIzit�
� �

p,q

ei�p
qtF2

q	t
exp
i �
i

�eiIzit�
� UA2p

q U�1exp
�i �
i

�eiIzit� [33]

The transformation UA2p
q U�1 denotes the operator

A2p
q expressed in the rotated system of operators

{B�k}:

UA2p
q U�1 � �

k

bpqkB�k [34]

and bpqk � �B�k
†UA2p

q U�1�. Consequently,

�1
‡	t


� �
p,q,k

bpqkF2
q	t
exp
i �

i

�eiIzit�B�kexp
�i �
i

�eiIzit�
[35]

In addition, the operators B�k are chosen to satisfy the
condition: ¥i �ei[I�zi, B�k] � �kB�k, so that, finally,

�1
‡	t
 � �

p,q,k

F2
q	t
bpqkB�kexp�i	�p

q � �k
t� [36]

Equation [36] is substituted into Eq. [27] to give

d

dt
�‡	t
��

1

2 �
p,q,k

�
p�,q�,k�

� ei	�p
q��k��p�

q���k�
tbpqkbp�q�k�

�B�k, �B�k�, �‡	t
� �0
‡��

� �
��

��

F 2
q	t
F 2

q�	t � �
e�i	�p�
q���k�
�d� [37]

This equation is transformed back to the tilted rotating
frame to yield

d

dt
��	t
��i �

i

�ei�I�zi, ��	t
�

�
1

2 �
p,q,k

�
p�,q�,k�

ei	�p
q��p�

q�
tbpqkbp�q�k��B�k, �B�k�, ��	t
� ��0��

� �
��

��

F 2
q	t
F 2

q�	t � �
e�i	�p�
q���k�
�d� [38]

The orthogonality of the spherical harmonic functions
and the spherical symmetry of an isotropic liquid
require that q� � �q. The secular approximation,
i.e., neglecting fast oscillating terms that average to
zero, requires p� � p. Thus, one gets

d

dt
��	t
��i �

i

�ei�I�zi, ��	t
�

�
1

2 �
p,q,k,k�

�
��

��

F 2
q	t
F2

�q	t � �
e�i	�p
q��k�
�d�

� bpqkbp	�q
k��B�k, �B�k�, ��	t
� ��0��

��i �
i

�ei�I�zi, ��	t
��
1

2 �
p,q,k,k�

jq	�p
q � �k�


� bpqkbp	�q
k��B�k, �B�k�, ��	t
� ��0�� [39]

in which

jq	�
 � Re �
��

��

F 2
q	t
F2

�q	t � �
e�i��d� [40]

is the spectral density function ��0 � U�0U�1 and
dynamic frequency shifts have been neglected.

A general solution of Eq. [39] requires consider-
ation of particular relaxation mechanisms. However,
if �ei�c � 1, in which �c is the correlation time for
stochastic fluctuations of the Hamiltonian �1(t),
then,

jq	�p
q � �k�
 � jq	�0p

q 
 [41]

where �0p
q is defined by [�0, A2p

q ] � �0p
q A2p

q and
jq(�0p

q ) is the spectral density function in the absence
of the RF field, such as would be calculated for
conventional laboratory frame relaxation (23). For
solution NMR spectroscopy, this assumption usually
is well justified. For example, if �c � 20 ns and �ei �
2� � 105 s�1, then �ei�c � 0.06. Using this
assumption,
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d

dt
��	t
��i �

i

�ei�I�zi, ��	t
�

�
1

2 �
pq

jq	�0p
q 
 �

kk�

bpqkbp	�q
k��B�k, �B�k�, ��	t
� ��0��

��i �
i

�ei�I�zi, ��	t
��
1

2 �
pq

jq	�0p
q 


� �UA2p
q U�1, �UA2p

�qU�1, ��	t
� ��0��

��i �
i

�ei�I�zi, ��	t
�

�
1

2 �
pq

jq	�0p
q 
U�A2p

q , �A2p
�q, U�1��	t
U � �0��U

�1

[42]

The conventional laboratory frame relaxation super-
operator is (9, 23):

�̂ ��
1

2 �
pq

jq	�0p
q 
�A2p

q , �A2p
�q, � �� [43]

Substituting this expression into Eq. [42] yields the
desired result:

d

dt
��	t
��i �

i

�ei�I�zi, ��	t
�

� U�̂�U�1��	t
U � �0�U
�1 [44]

The physical meaning of Eq. [44] can be illustrated
more clearly by expanding the density operator in an
orthogonal set of basis operators. Thus, the cross-
relaxation rate constant between two basis operators
B�m and B�n in the tilted frame is given by (23)

�mn � �B�m
†U�̂�U�1B�nU�U

�1�/�B�m
†B�m�

� �U�1B�m
†U�̂�U�1B�nU��/�B�m

†B�m� [45]

in which the last line is obtained using the cyclic
property of the trace. Thus, for any relaxation mech-
anism that satisfies Eq. [41], cross-relaxation rate
constants between operators in the tilted, spin-locked,
reference frame are obtained by projecting the oper-
ators back into the untilted rotating frame and then
calculating relaxation rate constants as usual, with the
condition that all homonuclear spins are treated as like
spins. For example, in the absence of exchange, the
relaxation rate constant for I�zi magnetization is ob-
tained immediately as

R1� � R1icos2�i � R2isin2�i [46]

where R1i and R2i are the laboratory frame relaxation
rate constants.

The foregoing formalism now must be generalized
to include chemical exchange. The derivation follows
the same general approach as previously shown. For
simplicity, only a single spin that exchanges between
N sites is considered. The laboratory frame spin Ham-
iltonian is written

�	t
 � �
j�1

N

pj�0jIz � �RF	t
� �1	t
 [47]

where pj is the equilibrium population of site j and

�1	t
 � �
j

� fj	t
 � pj��0jIz � �
j,p,q

fj	t
F2j
q 	t
A2p

q

[48]

In Eq. [48], the first summation on the right side is
associated with the fluctuating Zeeman Hamiltonian
caused by the exchange process and the second sum-
mation is the stochastic Hamiltonian associated with
the lattice coupling. The fj(t) is a stochastic function
that accounts for jumps between N sites, such that
fj(t) � 1 when the nucleus is in site j at time t and
fj(t) � 0 otherwise. By definition, fj(t) � pj. As
usual, jumps are considered to occur infinitely fast so
that no evolution of the spin system takes place during
a jump. In the rotating frame, the fluctuating part of
the Hamiltonian is given by

�̃1	t
 � �
j

� fj	t
 � pj��0jIz � �
j,p,q

fj	t
F2j
q 	t
A2p

q ei�p
qt

[49]

Now, introducing the average Larmor frequency, res-
onance offset, tilt angle, and effective field, respec-
tively, as


�� 0 � �

j

pj�0j

�� � �
j

pj�0j � �� 0 � �RF

tan �� �1/��

�eff � 	�� 2 � �1
2
1/ 2

[50]

U � exp{i�Iy} transforms the rotating frame into the
frame in which its z-axis is aligned along the effective
field direction for the average resonance offset. The
fluctuating Hamiltonian is then given by
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��1	t
 � �
j

� fj	t
 � pj��0j	I�zcos �� I�xsin �


� �
j,p,q

fj	t
F2j
q 	t
UA2p

q U�1ei�p
qt [51]

Finally, in the interaction frame, the stochastic part of
the Hamiltonian is given by

�1
‡	t
 � �

j

� fj	t
 � pj��0j �
k��1

1

B�kexp�ik�eff t�

� �
j,p,q

fj	t
F2j
q 	t
UA2p

q U�1ei�p
qt [52]

in which

B��1 � 	1/�2
I��sin �

B�0 � I�zcos �

B�1 � 	1/�2
I��sin � [53]

As before, the interaction frame Hamiltonian is
substituted into Eq. [27], the equation is transformed
back to the tilted rotating frame, and the conditions q�
� �q and p� � p are invoked. The resulting expres-
sion is

d

dt
��	t
��i�eff�I�z, ��	t
��

1

2 �
k

jex	k�eff


� �B�k, �B��k, ��	t
� ��0��

�
1

2 �
j, j�,p,q

�
��

��

fj	t
 fj�	t � �
F2j
q 	t
F2j�

�q	t � �


� exp��i�p
q��d�

� U�A2p
q , �A2p

�q, U�1��	t
U � �0��U
�1 [54]

in which

jex	�
� Re �
j, j�

�
��

��

�0j�0j�� fj	t
� pj�� fj�	t � �
� pj��

� exp��i���d���2 �
j�2,N

��u1���uj��2�j/	�j
2 � �e

2


[55]

where � has elements �0i�ij, �j and �uj� are the jth
eigenvalue and eigenvector, respectively, of the sym-

metrized matrix S�1�S, and Sij � pi
1/ 2�ij. Using the

property that the lattice functions in site i average to
zero, the cross-terms between the chemical shift mod-
ulation and the usual relaxation terms are discarded in
Eq. [54]. If the timescale for chemical exchange is
much longer than the correlation time �c, fj(t) fj�(t �
�) F2j

q (t) F2j�
�q(t � �) in the last term of Eq. [54] can

be replaced by pjF2j
q (t) F2j

�q(t � �)�jj� (8 ); this ap-
proximation is well justified for �s-ms timescale
chemical exchange in biological macromolecules. Us-
ing this assumption,

d

dt
��	t
��i�eff�I�zi, ��	t
�

�
1

2 �
k

jex	k�eff
�B�k, �B��k, ��	t
� ��0��

� �
j

pjU�̂j�U
�1��	t
U � �0�U

�1 [56]

in which �̂j is the relaxation superoperator (Eq.
[43]) for the spin in the jth site. Following the
derivation of Eq. [45], the cross-relaxation rate
constant for two operators B�m and B�n in the tilted
frame is given by

�mn �
1

2
�mn �

k

jex	k�e
�B�m
†�B�k, �B��k, B�m���/�B�m

†B�m�

� �
j

pj�U
�1B�m

†U�̂j�U
�1B�nU��/�B�m

†B�m� [57]

The first term in Eq. [57] is the contribution to relax-
ation of the operator B�m because of exchange broad-
ening. As can be seen, chemical exchange does not
lead to cross-relaxation between different spin oper-
ators. The second term in Eq. [57] is simply the site
population weighted average rate constant for cross-
relaxation between the operators B�m and B�n in the
absence of exchange in the tilted frame defined by the
average resonance offset.

Using Eq. [57], rotating frame relaxation rate con-
stants for I�z and I�x operators then are given by,
respectively,

R1� �
1

2
sin2�jex	�eff
� cos2� �

j

pjR1j � sin2� �
j

pjR2j

�
1

2
sin2�jex	�eff
� R� 1cos2�� R� 2sin2� [58]
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R2� �
1

2
cos2�jex	0
�

1

4
sin2�jex	�eff


� sin2� �
j

pjR1j � cos2� �
j

pjR2j

�
1

2
cos2�jex	0
�

1

4
sin2�jex	�eff


� R� 1sin2�� R� 2cos2� [59]

in which R� 1 and R� 2 are the population-averaged re-
laxation rate constants in the absence of chemical
exchange. Only the population-averaged quantities �,
R� 1, and R� 2 appear in Eq. [58]; none of the individual
tilt angles or relaxation rate constants appear explic-
itly. This is a consequence of the assumption that
chemical exchange is sufficiently fast to allow the use
of the perturbation approach of Eq. [27].

Equations [57] and [58] are general; however, Eq.
[55] can be solved explicitly only for certain kinetic
schemes describing the exchange process. The sim-
plest case is the two-site model in which the spin
exchanges between sites A and B (8 ):

A º
ka

kb

B [60]

Although simple, this particular kinetic scheme is of
rather general relevance as far as chemical exchange
is concerned because a number of more complicated
processes can be treated by defining pseudo–first-
order rate constants (5 ). The relative site populations
pa and pb satisfy the detailed balance relationship:
pb kb � pa ka and kex � ka � kb. For convenience in
the remainder of this work, the following quantities
are defined here:

�a � �0a � �RF

�b � �0b � �RF

� � �b � �a

� � pb�a � pa�b

�aeff
2 ��a

2 � �1
2

�beff
2 ��b

2 � �1
2 [61]

where �0a and �0b are the Larmor frequencies, R1a

and R1b are the longitudinal relaxation rate constants,
and R2a and R2b are the transverse relaxation rate
constants of spins in sites A and B, respectively. Other
quantities are defined in Eq. [50]. The geometric

relationship between these quantities is illustrated in
Fig. 1. For the two-site model, the result is

jex	�
� 2papb�
2kex/	kex

2 � �2
 [62]

which yields (13)

R1� � R� 1cos2�� R� 2sin2�� sin2�papb�
2kex/	kex

2 � �eff
2 


[63]

The range of validity of Wennerström’s theory is
of immediate importance. The timescales involved in
the definition of fast exchange include the correlation
time �c, the characteristic exchange time (�ex �
1/kex), and the relaxation time constants, given by the
reciprocals of the relaxation rate constants. In the
relaxation master equation in Eq. [27] (and see Eq.
[40]), the limits of integration are �� to � inasmuch
as the integrand is zero for times longer than �c (9).
Equation [55] shows that this condition also must hold
for �ex. The perturbative method also imposes the
requirement that t � 1/��̂�; therefore, �ex obeys the
inequality: �ex � 1/���. Wennerström originally devel-
oped this microscopic approach to laboratory frame
R2 relaxation, for which he found R2 � R� 2 �
pa pb�

2kex. Hence, a perturbative approach, requiring
the condition kex � R2 gives kex

2 � pa pb�
2, as

obtained from the Bloch-McConnell equation for fast
exchange.

Figure 1 Resonance offsets and effective fields in the
rotating frame of reference. Variables are defined in the text.
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USING THE LAPLACE TRANSFORM TO
SOLVE THE SLE

The goal of this section is to illustrate a frequency
domain approach for solving the SLE (Eq. [25]). The
Laplace transform of �̃(t) is defined by

�̃�s�� �
0

�

�̃	t
e�stdt [64]

The main useful properties of the Laplace transfor-
mation in the present context are the transformation of
differential and convolution equations into algebraic
equations. Thus, the Laplace transform of Eq. [25]
gives

�̃�s�� K�̃	t0
 [65]

where �̃(t0) is the initial value of the marginal average
in the time domain and the resolvent K is given by

K � 	s � � � �
�1 [66]

The average ���(s) can be calculated as

���	s
� �K��	0


� ���0� � 1spin��	0
K���0� � 1spin� [67]

in which ��0� � ( p1, p2, . . . , pN)t and ��0� �
(1, . . . , 1). Given the structure of the SLE, the evo-
lution of �̃i(t) is described by a set of N � M coupled
differential equations, where N is the number of sites
and M is the dimension of the �̃(t) vector (in the
superoperator representation). As can be seen from
Eqs. [65] and [66], the problem amounts to finding the
poles of K or, equivalently, the eigenvalues of � �
�. An equivalent formulation of the problem can be
made in terms of matrices of size M � M only, which
reduces the dimensionality of the problem and leads
to an interesting way of deriving approximate solu-
tions (12). The presentation of the method is beyond
the scope of this study, and the reader is referred to
Ref. 12 for a complete derivation. Although the solu-
tions of Eqs. [65] and [66] are obtained easily by
standard numerical methods, formal analytical solu-
tions can be obtained only in very simple cases. The
focus of the remainder of this study is on the solution
of the SLE for the simple case of two-site chemical
exchange and R1� relaxation. The stochastic variable
� takes two values �a,b and the exchange matrix �
(Eq. [8]) is given by

� � ��ka kb

ka �kb
� [68]

with the equilibrium population distribution

��0� � �pa

pb
� � �kb /k

ka /k� [69]

The average resolvent can be written in the form (12)

�K�� 	s � D0	s


�1 [70]

in which

D0	s
� L� � papb��s � kex � C��1� [71]

where

� � Lb � La [72]

L � paLa � pbLb [73]

C � pbLa � paLb [74]

and La,b � L(�a,b). The average resolvent in the
Laplace domain is obtained by computations involv-
ing only M � M matrices that are one half the size of
the matrices involved in the product space. The time
domain solution is obtained by applying an inverse
Laplace transform to Eqs. [67], [70], and [71] to
obtain the following integro-differential equation for
the average density operator

d

dt
���	t
� L� ���	t
� papb� �

0

t

e�	kex�C
	t�t�
����	t�
dt�

[75]

In many practical experimental situations, the long-
term evolution of ���(t) is of primary interest, and the
relevant limit is for s 3 0 in the Laplace domain.
Thus, for small s

D0
	1
	s
� L� � papb��1spin � s	kex � C
�1�

� 	kex � C
�1� � L� � papb�	kex � C
�1�

� spapb�	kex � C
�2� [76]

A formal inverse Laplace transform of Eq. [76] gives
a simple differential equation for the average of the
density operator
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d

dt
���	t
� L0

	1
���	t
 [77]

with

L0
	1
 � �1 � pa pb �	kex � C
�2�
]�1

�L � pa pb �	kex � C
�1�� [78]

Equation [77] represents the long time approximation
of the exact evolution of Eq. [75].

A REMARK ON THE DEFINITION OF
THE EXCHANGE REGIME

Equation [78] provides a definition of the fast-ex-
change regime. If

1spin � pa pb �	kex � C
�2� � 1spin [79]

then Eq. [78] is equivalent to D0(0) and

d

dt
���	t
� D0	0
���	t
 [80]

The use of these equations will be illustrated for
transverse relaxation in the laboratory frame. Using
the raising and lowering basis operators, the matrix
La,b for spins in sites a and b are given by

La,b � ��R2a,b � i�a,b 0
0 �R2a,b � i�a,b

� [81]

The matrices

L� � ��R� 2 � i�� 0
0 �R� 2 � i�� � [82]

� � �R2a � R2b � i� 0
0 R2a � R2b � i�� [83]

C � ��pb R2a � pa R2b � i� 0
0 �pb R2a � pa R2b � i��

[84]

are all diagonal. In the absence of an applied RF field,
the resonance offset does not affect relaxation and �
can be set to zero. Furthermore, in the current exam-
ple, ��� � �R2a � R2b� and k � R2a,b are assumed.
Using these conditions,

papb�	kex � C
�2� ��pa pb�
2kex
�21spin [85]

and Eq. [79] implies

pa pb�
�2 � kex

2 [86]

This is the usual fast-exchange condition for trans-
verse relaxation. If Eq. [86] is satisfied, then

D0	0
� L� � pa pb�
2/kex1spin [87]

gives the expected result for fast-exchange contribu-
tion to relaxation of transverse magnetization (23):

R2 � pa R2a � pb R2b � pa pb �
2/kex [88]

The definition of the fast exchange regime is based
on the “cross”-average of the Hamiltonian governing
the evolution of the spin system in both states (see C,
Eq. [72]). In the case of laboratory frame relaxation,
the usual criterion for fast exchange is obtained; how-
ever, different definitions of the exchange regime may
arise depending on particular circumstances. This
point will be shown in the example developed in the
following section.

APPLICATION TO EXCHANGE R1�:
EXTENSION OF THE FAST-EXCHANGE
LIMIT

In a recent study (12), the calculation of the relaxation
rate constant in the rotating frame R1� for isolated
spins was performed using the techniques introduced
in the previous section for two-site exchange. The
exact eigenvalues of L0

(1) given by Eq. [78] can be
obtained as analytic solutions to a third-order charac-
teristic polynomial; however, the resulting expres-
sions are complicated and approximations are neces-
sary to obtain simple analytic formula. Furthermore,
as noted by Trott and Palmer (11), the RF field inho-
mogeneity over the volume of the NMR sample,
translated into the eigenvalue inhomogeneity, results
in rapid averaging of the oscillatory (i.e., correspond-
ing to nonreal eigenvalues) components to zero. Thus,
the problem of finding the dominant relaxation rate
reduces to finding the largest (least negative) real
eigenvalue � of Eq. [78].

In a Cartesian operator basis in the rotating frame,
the matrix La,b for spins in sites a and b are given by

La,b � ��R2a,b ��a,b 0
�a,b �R2a,b ��1

0 �1 �R1a,b

� [89]
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For the cases of interest here, numerical simulations
indicate that effects of differences between the intrin-
sic relaxation rate constants in the two sites are neg-
ligible for k � �R2b � R2a� and k � �R1b � R1a�;
under these conditions, the relaxation rate constants
for individual sites can be replaced by the population
averaged values. Therefore, R1a � R1b � R� 1 and
R2a � R2b � R� 2, are assumed to be identical in sites
a and b and the stochastic variable is taken to be
�a,b � {�a,b}. Further simplification is obtained by
neglecting R� 1 and R� 2 in C, because kex � R� 1, R� 2.
With these approximations

� � � 0 � 0
�� 0 0
0 0 0

� [90]

L� � ��R� 2 ��� 0
�� �R� 2 ��1

0 �1 �R� 1

� [91]

C � �0 �� 0
� 0 ��1

0 �1 0
� [92]

As discussed previously, for transverse relaxation,
Eq. [79] defines the range of validity of the present
approach. A reasonable (sufficient, but not necessary)
constraint for Eq. [79] to be valid is that the eigen-
values of 1 � pa pb�(kex � C)�2� are close to unity,
which constrains their sum and product and implies

��	a � c
� � 1

��2	b2 � ac
� � 1 [93]

in which the following definitions have been intro-
duced:

a � �2	kex
2 � �1

2
� 	kex
2 � �1

2
2

b � 2�k3

c � kex
2 	�2 � kex

2 � �1
2


T � �2 � kex
2 � �1

2

d � papb�
2

� �
d

kex
2 T2 [94]

When the conditions of Eqs. [79] and [93] are not
satisfied, Eq. [77] no longer describes the evolution of

the average density operator; however, the value of
R1� obtained from the largest eigenvalue still may be
accurate. Notably, analytical solutions for R1� that
have been reported previously in the (10, 13) corre-
spond to particular cases where one of the parameters
(kex, �, �1, pa, or �) alone causes �c to tend to zero.

If kex � R1� and �c � 1, the characteristic
polynomial for Eq. [78] can be linearized with respect
to the eigenvalues �, R� 2, and R� 1 to yield (12)

R1� � R� 1cos2��
1

�
R� 2sin2�

�
1

�

sin2�papb�
2kex

�aeff
2 �beff

2 /�eff
2 � kex

2 � 2 sin2�papb�
2 � 	1 � �
�1

2

[95]

where the definitions of the effective fields and tilt
angle, given in Eq. [61] are modified to

�eff
2 � ��2 � ��1

2

�aeff
2 � �a

2 � ��1
2

�beff
2 � �b

2 � ��1
2

� � arctan	���1/��
 [96]

and � � 1 � �c. When � 3 1, R1� has the value
corresponding to the linearized eigenvalue of D0(0),
i.e.:

R1� � R� 1cos2�� R� 2sin2�

�
sin2�papb�

2kex

�aeff
2 �beff

2 /�eff
2 � kex

2 � 2 sin2�papb�
2 [97]

with the effective fields and tilt angle defined by Eq.
[61] (12). The result derived by Trott and Palmer (11)
by linearizing the eigenvalue problem for the Bloch-
McConnell equations directly is given by

R1� � R� 1cos2�� R� 2sin2�� sin2�
papb�

2kex

�aeff
2 �beff

2 /�eff
2 � kex

2

[98]

in which the effective field and tilt angles are defined
by Eq. [61]. Each of these expressions reduces to the
fast-exchange result given by Eq. [63] when kex � �.

The new expressions of Eqs. [95] and [97] differ
from Eq. [98] in several respects. First, both new
expressions contain an additional term �2
sin2�pa pb�

2 in the denominator. This term vanishes
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for asymmetric populations pa � pb but provides
increased accuracy when the site populations are not
highly skewed. Second, the parameter � appears in the
expression for R1� in Eq. [95]. Its presence involves a
function of kex, �1, and � in the definition of the local
and effective fields �aeff, �beff, and �eff, respectively.
Figure 2 compares R1� values calculated using Eqs.
[95], [97], and [98] as a function of the exchange rate
kex for different populations of the major site. Equa-
tions [95] and [97] provide increased accuracy when
the site populations are not highly skewed as a result
of the term �2 sin2�pa pb�

2 appearing in the denom-
inator of these equations but not in Eq. [98]. This term
vanishes for asymmetric populations pa � pb. Equa-
tion [95] provides the highest accuracy because of the
additional parameter � that enters the definition of the
local and effective fields �aeff, �beff, and �eff, respec-
tively.

The dependence of R1� on the carrier frequency
�RF provides a signature for the fast-exchange limit.
If exchange is fast, Eq. [63] shows that identical
results are obtained for �� and ��� , obtained by po-
sitioning the carrier symmetrically above and below
the average Larmor frequency �� 0. In contrast, if ex-
change is not fast and � is positive (negative), larger

(smaller) values of R1� are observed when �RF  �� 0

than when �RF ! �� 0.

RELATIONSHIP BETWEEN THEORETICAL
APPROACHES

Now, the relationship between the results of the per-
turbation and SLE approaches will be considered. The
perturbation analysis was performed in the tilted ro-
tating frame, whereas the SLE was solved using the
untilted rotating frame. The eigenvalues of Eq. [78]
do not depend on the basis chosen; however the
Cartesian operator representation (giving rise to the
definitions of Eqs. [89]–[92]) can be transformed us-
ing U� exp{i�Iy} as before to give an expression for
UL0

(1)U�1 in the tilted rotating frame. The secular
approximation then consists of neglecting the off-
diagonal elements of the matrix representation of
UL0

(1)U�1, in which case R1� is given by the (3, 3)
matrix element

R1� � R� 1cos2�� R� 2sin2��
sin2�papb�

2kex

�2 � �1
2 � kex

2 [99]

This equation differs from Eqs. [95], [97], and [98];
consequently, the latter three equations contain con-
tributions from nonsecular interactions in the tilted
frame.

To illustrate this point, the effective RF fields in
the tilted interaction frame (rotating about the I�z axis
with frequency �eff) are shown in Fig. 3. The effective
fields �aeff

‡ and �beff
‡ are not colinear with I�z. Thus,

Figure 2 Values of R1� obtained using Eq. [98] (11)
(���), Eq. [95] (. . .), and the numerical solution to the
6 � 6 Bloch-McConnell equations (—) for (a) pb/pa �
0.15 and (b) pb/pa � 0.5. Calculations used � � 2,200 s�1,
�� � 1,500 s�1, and �1 � 1,000 s�1.

Figure 3 Effective fields in the interaction frame of ref-
erence. The effective fields �aeff

‡ and �beff
‡ rotate around the

z�-axis with angular frequency �eff. Variables are defined in
the text.
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magnetization components that are spin locked along
the effective field directions for sites A and B contain
projections onto both the I�x and I�z operators that give
rise to nonsecular contributions to R1� in Eqs. [95],
[97], and [98]. Conversely, Eq. [99] is accurate under
conditions where the effective fields are close to co-
linear with I�z or vanish in the interaction frame. Three
limiting cases can be established. First, if �eff � �,
then precession in the interaction frame averages the
transverse components of the effective fields to zero
and the effective fields for sites A and B become
colinear with I�z. As a result, the secular approximation is
valid and Eqs. [95], [97], [98], and [99] become equiv-
alent to Eq. [63]. Consequently, for sufficiently large
�eff, the fast-exchange limit formula is applicable even
to chemical exchange processes outside of the fast-
exchange regime. Second, when exchange is fast, kex �
R1�, which implies kex

2 � papb�
2, the effective fields

shown in Fig. 3 are replaced by the population averaged
values ��aeff

‡ � � ��beff
‡ � � papb�. Therefore, the net pop-

ulation averaged effective field in the interaction frame
vanishes. In this fast-exchange limit, Eqs. [95], [97],
[98], and [99] once again become equivalent to Eq. [63].
Third, if the populations are highly skewed, pa � pb,
then the effective field �aeff

‡ approaches zero and the
secular approximation also is valid for spins in the A
sites. In this limit,�a"�� and Eqs. [95], [97], [98], and
[99] become

R1� � R� 1cos2�� R� 2sin2��
sin2�papb�

2kex

�beff
2 � kex

2 [100]

which was obtained previously by Trott and Palmer
(11). This equation also reduces to Eq. [63] when kex

� � but also is accurate for a range of parameters
outside of the fast-exchange regime (11).

EXPERIMENTAL RESULTS

Numerous investigations of R1� relaxation in proteins
have been reported (reviewed in Ref. 5). With one
exception (24), these studies were completed before
Eqs. [95], [97], and [98] had been reported in the liter-
ature; consequently, the fast-limit expression, (Eq. [63])
was used to fit experimental data. Recently, a 15N off-
resonance R1� spin relaxation study of a Leu99 to Ala
point mutant of T4 lysozyme has been presented that
used Eq. [98] to fit the relaxation data (24). For this
system, pb � 0.034 and Eqs. [95], [97], [98], and [100]
give nearly identical predictions. Figure 4 shows the
results of fitting Eqs. [63] and [98] to the data for the
backbone amide 15N of Gly 110. As shown, in Fig. 4(a),

the maximum value of R1� is obtained for ��  0; as
discussed previously, this is a hallmark of exchange
outside of the fast-exchange limit. Figure 4(b) shows the
dependence of R1� on sin2�. For fast exchange, identical
values of R1� are predicted for RF frequencies symmet-
rically placed relative to �� 0. In contrast, the results for
Gly 110 exhibit larger values of R1� for identical values
of sin2�when �RF �� 0 than when �RF!�� 0. This result
also is characteristic of chemical exchange outside of the
fast-exchange limit. The good agreement between the ex-
perimental values of R1� and the fitted values from Eq. [98],
as contrasted with Eq. [63], provides the first experimental
confirmation of the new expressions for R1�.

CONCLUSION

A general treatment of chemical exchange effects in
NMR spectroscopy based on the long-time behavior

Figure 4 The R1� for the backbone 15N of Gly 110 of the
Leu99 to Ala mutant of T4 lysozyme as functions of (a) ��

and (b) sin2�. Solid lines are the fits to Eq. [98] and dashed
lines are fits to Eq. [63]. The thin dashed line in panel (b)
shows the profile expected in the absence of chemical
exchange. Data were acquired with �1 � 5060 s�1 and
fitting was performed assuming kex � 1450 s�1 and pb �
0.034, as obtained independently from Carr-Purcell-Mei-
boom-Gill (CPMG) dispersion measurements (25 ). The op-
timized value of � � 3020 # 50 s�1. Reproduced from
Korzhnev et al., J Biomol NMR (2003) 26:39–48, with
permission from Kluwer Academic Publishers.
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of the average density operator within formalism of
the SLE (12) has been described. Approximate for-
mulas for the R1� relaxation rate constant in the
rotating frame of reference derived using this ap-
proach have been compared with the fast-exchange
limit results obtained using the conventional pertur-
bation approach (13). Experimental results for the
Leu99 to Ala point mutant of T4 lysozyme have been
presented that validate the new expressions for R1�

(24). The new results are more accurate when chem-
ical exchange does not approach the fast-exchange
limit and are essential for interpretation of chemical
exchange processes in proteins and other biological
macromolecules.
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