

I. Kinetics. The gas-phase decomposition of NO_2 , $NO_2(g) \rightarrow NO(g) + \frac{1}{2} O_2(g)$, is studied at 383°C, giving the following data:

- a) Is the reaction first or second order with respect to the concentration of NO₂?
- b) What is the value and the units of the rate constant?
- c) Determine the half-life of NO_2 assuming that its initial concentration is $3x10^{-6}\,M$

II Chemical Equilibria. A mixture of H₂, S, and H₂S is held in a 1.0 L vessel at 90 °C until the following equilibrium is achieved:

$$H_2(g) + S(s) \longrightarrow H_2S(g)$$

At equilibrium the mixture contains 0.46 g of H₂S and 0.40 g of H₂. The reaction is exothermic.

- a) Write the equilibrium constant expression for this reaction
- b) What is the value of K_c for the reaction at this temperature?
- c) Which direction will the equilibrium shift (i.e., tend to shift toward the formation of reactants, toward the formation of products, or have no effect) if the system is subjected to each of the following changes:
- Stress 1 H₂ is added
- Stress 2 The amount of S is increased
- Stress 3 The temperature is increased
- Stress 4 The amount of H₂S is decreased
- Stress 5 The partial pressure of H₂S is decreased

III. Acids and Bases. Predict the products of the following acid-base reactions, identify the conjugate acid-base pairs, and also predict whether the equilibrium lies to the left or to the right of the equation:

a)
$$H_3O^+ + OH^-$$

a)
$$HCO_3^-(aq) + F^-(aq)$$

b)
$$HC_2H_3O_2$$
 (aq) + HS^- (aq)

	Acid	Base	
Strongest Acids	HClO ₄	ClO ₄ -	Weakest Bases
	H_2SO4	HSO ₄	A
	ΗĪ	I ⁻	T
	HBr	Br ⁻	
	HCl	Cl ⁻	
	HNO_3	NO_3^-	
	H_3O^+	H_2O	
	HSO_4^-	$\mathrm{SO_4}^{2-}$	
	H_2SO_3	HSO ₃ -	
	H_3PO_4	$H_2PO_4^-$	
	HNO_2	NO_2	
	HF	$\mathbf{F}^{\text{-}}$	
	$HC_2H_3O_2$	$C_2H_3O_2^-$	
	H_2CO_3	HCO_3^-	
	H_2S	HS ⁻	
	HClO	ClO ⁻	
	HBrO	BrO ⁻	
	$\mathrm{NH_4}^+$	NH_3	
	HCN	CN ⁻	
	HCO ₃	CO_3^{2-}	
	H_2O_2	HO_2^-	
	HS ⁻	S^{2-}	
	H_2O	OH.	
₩eakest Acids			Strongest Bases

IV. Definitions. Define each of the following:

- 1. Chemical kinetics
- 2. Reaction rate
- 3. Rate law
- 4. Rate constant
- 5. First order reaction
- 6. Expression for the first order reaction rate
- 7. Second order reaction
- 8. Expression for the second order reaction rate
- 9. Zero-order reaction
- 10. Expression for the zero-order reaction rate
- 11. Half-life of a reaction
- 12. Expression for half-life of the first-order reaction
- 13. Expression for half-life of the second-order reaction
- 14. Collision theory
- 15. Activation energy
- 16. Activated complex
- 17. Arrhenius equation
- 18. Reaction mechanism
- 19. Elementary step
- 20. Reactants
- 21. Products
- 22. Intermediates
- 23. Catalysts
- 24. Molecularity of a reaction
- 25. Unimolecular reaction
- 26. Bimolecular reaction
- 27. Termolecular reaction
- 28. Rate-determining (rate-limiting) step
- 29. Homogeneous catalysis
- 30. Heterogeneous catalysis
- 31. Chemical equilibrium
- 32. Equilibrium constant: definition, expression for a given chemical reaction
- 33. Homogeneous equilibrium
- 34. Heterogeneous equilibrium
- 35. Reaction quotient
- 36. Equilibrium position
- 37. Le Châtelier's principle
- 38. Bronsted acid, Bronsted base
- 39. Conjugate acid-base pairs
- 40. Strong acid, strong base
- 41. Weak acid, weak base
- 42. Acid ionization constant, base ionization constant
- 43. Ion product of water
- 44. pH, pOH
- 45. Neutral, acidic, basic solutions