1H NMR

Protons (nucleus of a hydrogen atom) also have a net spin and can be observed in the NMR.

- **Hydrogen atoms are more than 99% \(^1\)H.**

 Other isotopes have special names

 \(^2\)H = deuterium

 \(^3\)H = Tritium (radioactive)

- **Remember \(^{13}\)C is only 1% of carbon; \(^1\)H NMR is much more sensitive.**

 - Practically speaking for a typical lab molecule, you can obtain a \(^1\)H-NMR with 1-2 mg of compound in a matter of minutes but the same sample may require a few hours to obtain a \(^{13}\)C spectrum.

\[
\Delta E = h\nu
\]

In a strong magnetic field, the energy level difference corresponds to the energy of radio waves.
FYI: Q&A

How strong is a magnetic field in a typical NMR?
300 MHz NMR = 7.0459 tesla
600 MHz NMR = 14.0918 tesla

What other nuclei are commonly observed by NMR?
15N, 19F, 31P

What type of NMR is used in MRI?
MRI methods typically look at 1H-NMR of water in the different environments of the body.

Protons resonate at a different frequency than 13C's. Typical compounds lie within a smaller range of frequencies than 13C.

PROTONS ON TYPICAL ORGANIC COMPOUNDS 1-12 ppm

Typical locations of 1H-NMR resonances.
See Table 13.1 in your text.
Example:

WHAT IS SO SPEC IAL ABOUT PROTON NMR?

• You can accurately integrate your spectra to know how many of each proton type you have.
• Through bond coupling tells us about what is adjacent to the protons of a particular resonance.
1H-NMR peaks can be integrated!!

Protons can couple (cause splitting) of C-13 peaks but we don’t see splitting of proton peaks by carbon!! C-H splitting is very small because only 1% of Carbon has a spin!.
Protons can split other protons by through bond J-coupling.

Coupling can be observed between two protons. The coupling originates because in a magnetic field, the nuclear spin will perturb the local distribution of electrons. Protons on adjacent carbons are said to be *Vicinal* protons.

Are coupled over three bonds.

Splitting over two bonds is usually not observed. Geminal coupling is only observed when the two protons are in different “chemical environments”, this happens when the protons are diastereotopic (more on this later).

Protons on the same carbons are said to be *geminal* protons.

Proton NMR signals are also split following the N+1 rule but for proton NMR N typically represents the number of adjacent protons.

Old NMR with Small wimpy magnet!
N+1 RULE STILL APPLIES
(but it can get more complicated)

PAY ATTENTION!:

\[^{13}\text{C-NMR} \]
Splitting pattern reflects how many protons are directly attached to the carbon atom

\[^{1}\text{H-NMR} \]
Splitting pattern reflects how many protons are connected to adjacent carbon atom(s)

A Triplett

A Doublet
Rules for J-coupling

• Nuclei must be chemical shift NON-EQUIVALENT to show (obvious) coupling to each other:

 • 1,2-dichloroethane is a singlet

• The coupling is mutual: A splits B the same amount as B splits A

 \[J_{AB} = J_{BA} \]

• Coupling constants are reported in Hz and will have the same value on different instruments.

Which is it?
C₄H₈O₂

\[
\text{CH}_3\text{COOCH}_2\text{CH}_3
\]

Br\(-\text{OD}\)

\[
\text{ppm}
\]

\[
\text{ppm}\delta
\]
C_{3}H_{6}O_{2}

Same compound run on a 60 MHz and a 300 MHz spectrum

Coupling constant is measured by taking the difference between peaks (in ppm) within a multiplet and multiplying by the field strength in Hz.
Common Splitting Patterns

Ethyl

Isopropyl

aromatic protons have (almost) the same chemical shift
$\text{C}_4\text{H}_{10}\text{O}$

$\text{C}_{10}\text{H}_{14}\text{O}$
C₈H₁₅NO

C-13

173.2 s
46.9 t
46.5 t
44.2 t
32.6 q
27.4 s
25.9 q (2)

H-1 (first order)

2.90 s 3H
3.2 t 2H
2.10 s 2H
1.47 t 2H
1.11 s 6H

Problem:

C₁₀H₁₂O

from: structural database for organic compounds
Protons in different chemical structures have different amounts of splitting or “coupling constants”.

• Bad News: Life gets more complicated

• Good News: Splitting tells us more about the chemical structure.

Coupling Constants Depends on Structure and Geometry

Approximate Coupling Constants.

- 7 Hz (free rotation)
- 10 Hz
- 15 Hz
- 2 Hz
- 8 Hz

Special Couplings over more than 3 bonds:

- 2 Hz
- 6 Hz
- 0-3 Hz depends on geometry
- 1 Hz
(i.e. Yuck!)

400 MHz

J = 2-3 Hz

J = 8-10 Hz
Why is A a singlet?
How do you explain the splitting pattern of B?
How do you explain the splitting pattern of C?
Spin splitting diagrams

What if the H’s are different, and have very different coupling constants??!

A doublet of doublets
Aromatic (o,m,p) coupling constants

\[H^a 7.58 \text{ ppm} \]
\[H^b 7.29 \text{ ppm} \]
\[H^c 6.92 \text{ ppm} \]

\[J(H_{ab}) 1.9 \text{ Hz} \]
\[J(H_{bc}) 8.0 \text{ Hz} \]
\[J(H_{ac}) 0.3 \text{ Hz} \]

3 doublets of doublets

‘Doublets of triplets’ and ‘doublets of quartets’

where \(J_{ab} \neq J_{ac} \)
What if Jab ~ Jac

Still looks like a triplet, even on a high field spectrometer:
Referred to as an 'apparent triplet'

FIGURE 4.23. A two-proton system spin coupling with a decreasing difference in chemical shifts and a large J value (10 Hz); the difference between AB and AX notation is explained in the text (p. 170).
EXAMPLE: Diastereotopic protons
Diasteriotopic protons are in non-chemically equivalent environments.

FIGURE 4.48. 3-Methylglutaric acid in D$_2$O at 300 MHz. The COOH protons have exchanged with D$_2$O and appear in the HDO peak. The CH$_3$ peak is broadened and "filled in."

$$\text{C}_4\text{H}_{10}\text{O}_2$$
How can coupling constants help you assign the spectrum of vinyl acetate?
Assign the aromatic protons:

![NMR Spectra](image)

Hint:

![Aromatic Protons](image)

Coupling to Hetero Atoms

- **Observed Only Sometimes**
 - Depends on Concentration
 - Solvent used

- **Rarely Observed**

![Coupling to Hetero Atoms](image)

WHY: hydrogen atoms exchange due to hydrogen bonding

![Hydrogen Exchange](image)

Easy Test

- ![Easy Test](image)

The hydrogen isotope deuterium (²H) has no spin and cannot couple
Assembling Structures Using 1H and 13C NMR.

1. Determine and Assign IHD (Mol formula/C13)
2. Identify symmetry (C13)
3. Identify Functional Groups (C13 or other techniques).
4. Explore around functional groups
 - Identify or “map” groups in H-NMR and infer adjacent groups
5. Assemble fragments.
C$_9$H$_{18}$O

C-13
- 71.5 t
- 68.7 d
- 36.9 d
- 26.6 t (2)
- 23.4 t (2)
- 23.0 q (2)

H-1
- 3.33 d 2H
- 3.19 sept 1H
- 1.83 m 1H
- 1.47 m 4H
- 1.51 m 4H
- 1.16 d 6H

Why Multiplets?
- Should be 1.83 t,t,t = multiplet
- Should be 1.47 d,d,d,d = multiplet
13C-NMR: 1H-NMR:

13.3

C$_9$H$_{16}$O$_2$

13C-NMR: 1H-NMR:

173.6, s 3.67, s, 3H
51.3, q 2.19, d, J = 6.4 Hz, 2H
42.0, t 1.70, m, 6H
34.9, d 0.9-1.3, m, 5H
33.1, t (2)
26.2, t (2)
26.1, t

13.4

C$_8$H$_{11}$N

127.1, s 5.79, t, J = 6.2 Hz, 1H
126.3, d 2.97, s, 2H
117.7, s 2.02, m, 4H
28.0, t 1.70, m, 4H
25.8, t
25.1, t
22.5, t
21.8, t
$\text{C}_{11}\text{H}_{18}\text{O}_4$

$^1\text{H NMR}$

- 214.9, s
- 173.5, s
- 73.6, d
- 61.7, t
- 55.1, d
- 44.1, t
- 29.9, t
- 29.2, t
- 28.1, t
- 24.0, t
- 14.1, q

$^13\text{C-NMR}$

- 4.20, q, $J = 6.0$ Hz, 2H
- 4.00, d, $J = 3.5$, 1H
- 2.9, d, bs, 1H (exchanges)
- 2.3-2.7, m, 3H
- 1.2-1.9, m, 8H
- 1.30, t, $J = 3$H
Difficult to determine structure by 1H and 13C NMR only.
Where is the double bond?
Is the double bond cis or trans?
\[\text{C}_7\text{H}_{12}\text{O} \]

1H-NMR
- 9.72 t, \(J = 8.1 \) Hz, 1H
- 5.48 dq, \(J = 15.9, 6.2 \) Hz, 1H
- 5.20, dt, \(J = 15.9, 5.9 \), 1H
- 2.40 dt, \(J = 8.1, 7.4 \) Hz, 2H
- 1.96, td, \(J = 7.9, 5.9 \)Hz, 2H
- 1.66, quint, \(J = 8.0 \) Hz, 2H
- 1.71, d, \(J = 6.2 \) Hz, 3H

Question:
Would you be able to solve the structure of this compound by \(^1\text{H} \) and \(^{13}\text{C} \) NMR?