Chem 334, Exam 1 Professor Fox Spring 2010

Your Name_____

Open note, open book

1. Match the following to their IR spectra. (15 points) (not all compounds have a match). Place an X next to compounds without a match

2. Reaction of **A** with MeMgBr could lead to either **B** or **C**. Explain how you would use IR spectroscopy to distinguish these compounds

 AlCl₃ catalyzed reaction of **D** could lead to either **E** or **F**. Explain how you would use coupling constants in the ¹H NMR to distinguish these compounds. (7 points)

4. Consider the spectroscopic data for compound 1:

$C_{10}H_{18}O_2$

¹ H NMR	¹³ C NMR	
6.88 (dd, J= 16.0, 6.1 Hz, 1H)	168.0, s	
5.83 (d, J = 16.0 Hz, 1H)	155.8, d	IR : 1720 cm ⁻¹
4.87 (septet, J=6.8 Hz, 1H)	120.3, d	
2.34 (m, 1H)	70.8, d	
1.44 (m, 2H)	38.2, d	
1.32 (d, J=6.8 Hz, 6H)	29.5, t	
1.11 (d, J=6.6 Hz, 3H)	21.7, q (2 carbons)	
0.90 (t, J=7.0 Hz, 3H)	20.0, q	
	11.7, q	

b. Assign the following coupling constants

For your answer, draw the substructure of your product, and specify any (7 points) stereochemical information that is indicated by the coupling constants:

6.88 (dd, J= 16.0, 6.1 Hz, 1H) 5.83 (d, J = 16.0 Hz, 1H)

c. Assign the substructure associated with the following ¹³C NMR resonances (7 points)

168.0, s 155.8, d 120.3, d 70.8, d

d) draw the structure of the product (no partial credit)

(10 points)

(

$C_{11}H_{12}O_3$

¹ H NMR	¹³ C NMR	IR: 1770 cm ⁻¹
7.16 (d, $J = 8.4$ Hz, 2H) 6.90 (d, $J = 8.4$ Hz, 2H) 4.64 (dd, $J = 9.1$, 7.1 Hz, 1H) 4.23 (dd, $J = 9.1$, 6.8 Hz, 1H) 3.81 (s, 3H) 3.39 (m, 1H) 2.90 (dd, $J = 7.7$, 17.4 Hz, 1H) 2.63 (dd, $J = 7.4$, 17.4 Hz, 1H)	176.8, s 159.3, s 140.1, s 128.0, d (2 carbons 114.7, d (2 carbons 74.5, t 55.6, q 40.7, t 36.1, d))

a) Circle the functional group that is associated with

(6 points)

(i) IR: 1770 cm⁻¹

b. Assign the following coupling constants and chemical shifts For your answer, draw the substructure of your product, and specify any stereochemical information that is indicated by the coupling constants:

(14 points)

4.64 (dd, *J* = 9.1, 7.1 Hz, 1H) 4.23 (dd, *J* = 9.1, 6.8 Hz, 1H) 3.39 (m, 1H) 2.90 (dd, *J* = 7.7, 17.4 Hz, 1H) 2.63 (dd, *J* = 7.4, 17.4 Hz, 1H) c. Assign the substructure associated with the following ¹³C NMR resonances

159.3, s 140.1, s 128.0, d (2 carbons) 114.7, d (2 carbons) 55.6, q

d) draw the structure of the product (no partial credit)

(13 points)

Overview of *typical* ¹H NMR shifts **Note:** alkene region modified from earlier handout

¹H NMR Tables

Experimental sp² ¹H chemical shifts (ppm).

¹H NMR Tables

Alkanes

¹H NMR Tables

