Chem 333
Final Exam
Dec 14, 2001
Professor Fox

Write your name on every page
200 points

Name____________________________________
1. (16 points) Match each structure with the correct spectrum

write the answers on these lines

<table>
<thead>
<tr>
<th>Structure</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name______________________________________

Exchanges in D$_2$O
Exchanges in D$_2$O
Exchanges in D$_2$O
Exchanges in D$_2$O
2. Calculate the UV maximum for the following compounds. (20 points)
3. Explain how the labeled fragments are formed. Relative intensities are given in parentheses. (20 points)
4. The mass spectra of compounds A and B are nearly identical, except for the additional peak at 208 in the spectrum of A. Explain why, and in doing so assign the labeled peaks in the mass spectrum. (20 points)
5. McLafferty rearrangements of the molecules depicted below will give rise to fragments that can be detected by mass spectrometry. Circle the fragments that are observed. You may need to circle more than one answer for each! (24 points)

Name__
READ CAREFULLY!

To receive full credit for question 6, clearly show your rationale for elucidating the structure. In addition, all 1H and 13C NMR chemical shifts, as well as 1H coupling constants must be assigned and displayed in the designated blocks. This will involve drawing your final structure at least 3 times. Simply drawing the structure of the product will get you no credit.

To receive full credit for question 7, clearly show your rationale for elucidating the structure. In addition, all 1H and 13C NMR chemical shifts, as well as 1H coupling constants must be assigned and displayed in the designated blocks. This will involve drawing your final structure at least 3 times. Furthermore, assign at least 2 peaks associated with the main functional groups in the IR spectrum. Also, assign the bolded numbers in the mass spectrum. Simply drawing the structure of the product will get you no credit.
6. C$_9$H$_{10}$O$_2$ (50 points)

1H NMR
7.30, m, 2H
6.95, m, 3H
4.22, dd, 1H, J=3.5, 11.3 Hz
3.97, dd, 1H, J=5.7, 11.3 Hz
3.36, m, 1H
2.91, dd, 1H, J=4.4, 5.2 Hz
2.76, dd, 1H, J=3.3, 5.2 Hz

13C NMR
158.5, s
129.5, d (2)
121.3, d
114.7, d,(2)
68.7, t
50.2, d
44.7, t
Question 6 continued

Name______________________________________
Question 6 continued

\[^{13}\text{C}\] chemical shift assignments

\[^{1}\text{H}\] chemical shift assignments

\[^{1}\text{H}\] coupling constant assignments
7. C₉H₁₂N₂O (50 points)

¹H NMR
- 6.86, bs, 1H
- 6.83-6.72, m, 5H
- 6.5, bs, 1H
- 2.88, dd, 1H, J=5.7, 8.6 Hz
- 2.45, dd, 1H, J= 5.7, 13.3 Hz
- 2.14, dd, 1H, J=8.6, 13.3 Hz
- 1.1, bs, 2H

¹³C NMR
- 176.7, s
- 138.9, s
- 129.3, d (2)
- 128.0, d (2)
- 126.0, d
- 56.2, d
- 41.2, t

MS:
- 164(15), 147(4), 146(4), **120**(100), 103(12), **91**(13), 73(19), 65(5), 51(2), 28(4), 18(6)

IR

¹H NMR (500 MHz)
13C chemical shift assignments

1H Chemical shift assignments

1H coupling constant assignments

IR assignments
Mass Spec assignments