
1. Give the hybridization for each non-H atom (6 points)

$$H_{0}$$

Quiz continued on next page. The following table may be useful

Tante 4-3	Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent Equatorial to the Conformer with the Substituent Axial				
Substituent	ΔG° [kcal mol ⁻¹ (kJ mol ⁻¹)]		Substituent	ΔG° [kcal mol ⁻¹ (kJ mol ⁻¹)]	
Н	0	(0)	F	0.25	(1.05)
CH_3	1.70 1.75 2.20	(0) (7.11) (7.32) (9.20)	Cl	0.52	(2.18)
CH ₃ CH ₂	1.70 1.75	(7.32)	Br	0.55	(2.30)
(CH ₃) ₂ CH	2.20	(9.20)	I	0.46	(1.92)
(CH ₃) ₃ C	≈ 5	(21)			
Ö			НО	0.94	(3.93)
но-с	1.41	(5.90)	CH ₃ O	0.75	(3.14)
o c	1.41		H ₂ N	1.4	(5.9)
CH₃O−C	1.29	(5.40)			
Note: In all exa	amples, the more stable conformer i	s the one in which the sub	stituent is equatorial.		

2. (7 points each) For each pair of cyclohexanes, which is more stable. Explain your reasoning in detail. Your answer should include drawings of cyclohexane conformations. No credit for a correct guess, only a correct explanation.

b.
$$CH_3$$
 or tBu A B