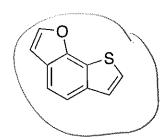
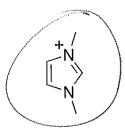

Chem 332 Exam 2 2009 Prof. Fox 50 minutes 80 points


Show your work in detail


WRITE YOUR NAME ON EVERY PAGE

NAME

1. Circle the molecules that are aromatic. No partial credit. 3 points each

2. Photolysis of compound 1 leads to equal amounts of two products—2 and 3. Upon heating, 2 leads exclusively to compound 4, and 3 leads exclusively to 5. (25 points)

- a. Provide structures for 2 and 3, and an arrow pushing mechanism for their formation.
- b. Use molecular orbital theory to explain the stereoselectivity for the formation of compounds 2 and 3.
- c. Provide an arrow pushing mechanism for the conversion of 2 into 4, and for the conversion of 3 into 5. Molecular orbital analysis is NOT required for this subquestion.

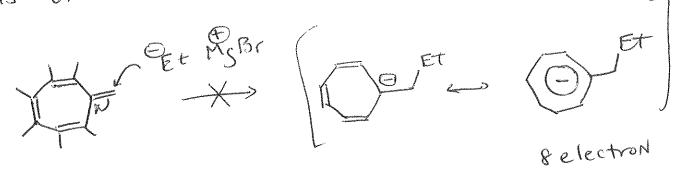
Continue your answer on the next page

2. continued

2b (CONT) BECAUSE THE HOMO WAS "TIRE" SYMMETRY, the Electrocyclic ring opening is DISROTATORY.

Two DISROTATIONS ARE POSSIBLE.

2c Both 2 and 3 UNDERGO [1,5]-Hydride SHIFTS to give 4 and 5, respectively.


$$P_{3}C \xrightarrow{P_{3}C} \xrightarrow{P_{3}$$

3. Compound 6 reacts with EtMgBr to give an anionic product that, upon treatment with DCl, produces 7. However, an attempt to carry out a similar reaction with 8 is unsuccessful, as product 9 is not produced.

Explain why the reaction to form 7 is successful. Explain why the reaction to form 9 is unsuccessful. (20 points)

ELEMBBE ADDS to be to give AN AromATIC ANION

SIMILAR REACTION WITH 8 WOULD GIVE AN ANTI ADDMIC, 8 electron ANIONIC Species. THIS is UNFAVORABLE!

ANTI-

Provide a detailed arrow pushing mechanism. Molecular orbital analysis is NOT 4. required. (20 points)

$$CO_2$$
Et A CO_2 Et CO_2 E