Name

use extra paper (use a staple or paper clip)

1. Match each compound with its IR spectrum.

For A, steric hinderance prevents H-bonding. Thus, the OH stretch is sharp.

OH

Α

D
0

3093	42	2606	77	1631	77	1236	9	625	58
3047	43	2487	81	1500	11	1168	41	812	31
3023	52	1934	81	1475	8	1153	52	753	9
2963	64	1846	84	1391	62	1072	49	690	12
2847	72	1606	22	1373	39	1024	64	618	64
2837	72	1598	4	1315	72	999	77	535	47
2723	74	1667	79	1293	77	888	64	507	38

3619	9	2866	19	1378	66	1083	62	707	23	Γ
3084	57	1596	62	1327	26	1072	47	700	18	
3054	50	1495	47	1312	58	1027	57	611	46	
3026	47	1467	92	1245	63	928	46	580	47	
2955	11	1460	14	1222	19	801	58	570	55	
2925	4	1441	42	1171	38	761	10	487	50	
2869	21	1421	19	1101	43	746	44	434	44	

The syntheses in problems 2-4 all give racemic products

LiAlH₄ is a strong reducing agent, and reduces both esters and ketones

3)

NaBH₄ only reduces the ketone

4)

QН

epoxidation is selective for the more substituted alkene reduction at the more sterically accessible center

5) Propose a multistep synthesis

Retrosynthesis: this is your scratch work! We find that there is more than one possibility

(This type of arrow refers to a "backwards" transformation

Points about the above retrosynthesis

- Path a is better than b because it is shorter, and because it uses an allylic bromide rather than a secondary bromide (we expect a better yield with the more reactive allylic bromide in an S_N2 reaction).
- We worked our way back to a 5 carbon intermediate epoxide, because we knew that this could be constructed from our starting alkene.

The forward synthesis: (this is your formal answer!)