1) Provide a mechanism

$$Br$$
 H OH HBr Br Br H_2O H_2O

2) Which reaction is faster (A or B)? Why?

Remember: carbocation formation is rate determining! The ideal geometry for a carbocation is planar with 120° angles. Thus, the carbocation formation is slow because it is severly distorted by the 60° angle of the cyclopropane ring.

Severe distortions are not required in order to put a cyclopentane in a planar arrangement awith 120 ° angles. This is the faster reaction

The carbocation

the faster reaction

intermediate is resonance

ring- see below). This is

stabilized (with the benzene

3) Which reaction is faster (A or B)? Why?

The arrow pushing is the same as for question 2. The rate differences again relate to carbocation stability.

В

side view

Εt

Et'

HO

HBr

Such resonance structures do not apply for the cation below

the $\boldsymbol{\pi}$ orbital of the carbocation cannot overlap with the π system of the benzene ring. No resonance stabilization

4) Provide a detailed explanation

anti-periplanar. At least one group must be equatorial.

5) Draw the product of the following reaction. Explain your assignment and provide a mechanism.

We need to use the spectral data to pick the right product. We can tell right away by looking at the ¹³C NMR that **A** is not correct—we would expect one of the alkene carbons to be a singlet. The complete assignments are below:

