Purified Protein → Solve Phase

Build model and refine

Crystal lattice

“Real Space”

Reflections

“Reciprocal Space”

\[\rho(x, y, z) \quad \text{pronounced rho} \]

\[|F_{hkl}|^2 \propto I \]

\[\rho_{(x,y,z)} = \frac{1}{V} \sum_h \sum_k \sum_l |F_{(h,k,l)}| \exp[-2\pi i (hx + ky + lz - \alpha_{(h,k,l)})] \]
Each reflection defines a set of parallel planes that slice through the crystal.

Reflections are the result of constructive interference off a set of parallel planes.

One dimensional waves

\[f(x) = F \cos 2\pi (hx + \alpha) \]

The frequency term designates one of several Fourier terms.
Fourier Series

\[f(x) = F_0 \cos 2\pi (0x + \alpha_0) + F_1 \cos 2\pi (1x + \alpha_1) + F_2 \cos 2\pi (2x + \alpha_2) + \ldots + F_n \cos 2\pi (nx + \alpha_n), \]

so that:

\[f(x) = \sum_{n=0}^\infty F_n \cos 2\pi (nx + \alpha_n). \]

So what does it do for you?

Closer to Crystallography

\[f(x) = \sum_{n=0}^n F_n [\cos 2\pi (hx) + i \sin 2\pi (hx)] \]

Setting \(\theta = 2\pi (hx) \)

and using:

\[\cos \theta + i \sin \theta = e^{i\theta} \]

The really scary equation on top is a little less scary:

\[f(x) = \sum_{n=0}^n F_n e^{2\pi i (hx)} \]

Complex number

\[a + ib \]

\[\begin{array}{c}
\text{real} \\
\text{imaginary}
\end{array} \]

\[i = (-1)^{1/2} \]
Let’s Move to a 3-Dimensional Wave

\[f(x, y, z) = \sum_{h} \sum_{k} \sum_{l} F_{hkl} e^{2\pi i(hx + ky + lz)} \]

real space \(x = \text{Å} \)

reciprocal space \(h = \text{Å}^{-1} \)

fourier transform or FT

\[F(h) = \int_{-\infty}^{\infty} f(x) e^{2\pi i(hx)} dx \]

\[f(x) = \int_{-\infty}^{\infty} F(h) e^{-2\pi i(hx)} dh \]

\[F_{hkl} \text{ is a Complex Function} \]

Decompose \(F_{hkl} \)

\[\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| e^{-2\pi i(hx + ky + lz)} \]

\[|F_{hkl}| = (I_{hkl})^{1/2} \]

phase angle \(\alpha_{hkl} \)
F_{hkl} is a complex function - continued

imaginary

\[i \ b \]

real

\[a \]

$N = a + ib$

imaginary

\[F_{hkl} \]

real

angle is the phase \(\alpha_{hkl} \)

Vector length

$|F_{hkl}| = (I_{hkl})^{1/2}$

Fourier Terms Add Up to Give Structure Factor F_{hkl}

$$F_{hkl} = \sum_{j=1}^{n} f_j e^{2\pi i(hx_j + ky_j + lz_j)}$$

Assume we have a structure with only 3-atoms in unit cell, so $n=3$
isomorphous replacement gives F_{hkl}

F_P - protein

F_{PH} – derivatized protein + heavy atom

F_H – heavy atom alone

$|F_H|$ from simple subtraction

α – for F_H solved by direct methods – computational or

Patterson Function $(|F_{PH}| - |F_P|)^2$

(page 124-128 of CMCC)

Introduce a heavy atom into protein crystal

$[PH] - [P] = [H]$
Now a graphical picture of how MIR works

1) First draw a circle of radius $|F_P|$

2) Then place the F_{H1} vector and draw circle from its tip of radius $|F_{PH1}|$

3) Now place F_{H2} from second derivative

and draw a circle from tip of F_{H2} with a radius of $|F_{PH2}|$
Either deriv. alone does not determine phase.

Only both derivatives together solve phase.

The Phase Problem is Solved

Methods to Obtain Phase

0. Multiple Isomorphous Replacement (MIR) _i.e._ Hg compound binding Cys residue

0. Molecular Replacement (MR) – use a homologous protein, (>50% identity)

0. Multi-wavelength Anomalous Dispersion (MAD phasing) – the fastest way to solve a structure due to better quality initial phases
$|F_{hkl}| = (I_{hkl})^{1/2}$

Decompose F_{hkl}

$$\rho(x,y,z) = \frac{1}{V} \sum_h \sum_k \sum_l |F_{hkl}| \ e^{-2\pi i (hx + ky + lz - \alpha_{hkl})}$$

real space $x = \text{Å}$

reciprocal space $h = \text{Å}^{-1}$

Molecular Replacement

Molecular Replacement (MR) – another method to estimate phases
– use a structurally homologous protein
 - >25% sequence identity is sometimes possible
 - >50% sequence identity is a safe bet

1) Make search model
 - find structural model of sequence homolog
 - from sequence alignment and homolog structure, create model
 - mutate or trim down to what the two proteins have in common
 - energy minimize to eliminate bad geometry (intro to refinement)

2) Search model defines electron density – “FT the electron density”
Molecular Replacement - continued

3) Search model defines electron density – “FT the electron density”

\[F_{hkl} = \iiint \rho(x, y, z) e^{2\pi i (hx + ky + lz)} \, dx \, dy \, dz \]

theoretical reciprocal space

\[|F_{\text{calc}}| \rightarrow |F_{\text{obs}}| \]
\[\alpha_{\text{calc}} \]

4) Rotation and Translation MR Search of \(|F_{\text{calc}}|\) into x-ray data set (\(|F_{\text{obs}}|\))

5) Once rotation and translation alignment is found, use this matrix to apply \(\alpha_{\text{calc}}\) to measured x-ray data set (\(|F_{\text{obs}}|\)).