Chapter 23 Amino Acids, Peptides & Proteins

1. Substituent

\[\text{R} \]
\[\text{OH} \]
\[\text{H} \]
\[\text{2} \]
\[\text{NH} \]
\[\text{CH}_2 \text{COOH} \]
\[\text{amino acid} \]
\[\text{sterogenic center} \]

There are 20 common naturally occurring amino acids

\(R = 20 \) different subs

2. Protein: polymers of \(\alpha \)-amino acids (2 about 30)

Peptides: polymer of \(\leq \) about 30 \(\alpha \)-amino acids

3. Stereochemistry:

\[\text{CH}_2 \text{COOH} \]
\[\text{H} \]
\[\text{N} \]
\[\text{2} \]
\[\text{OH} \]
\[\text{all but 2 of 20 have S-configuration} \]

Further Projection

\[\text{CO}_2\text{H} \]
\[\text{amino acid on left} \]
\[\text{natural amino acids are (L)} \]

4. Common \(\alpha \)-amino acids

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Stereochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}) (\text{H}) (\text{OH}) (\text{gly})</td>
<td>Glycine</td>
<td>None</td>
</tr>
</tbody>
</table>

See page 1176

\(* \) = essential amino acid

\(* \) must inject; body cannot make

5. A \(-\) alkyl

\[\text{H}_2\text{N} \]
\[\text{CH}_2 \text{OH} \]
\[\text{alanine} \]
\[\text{A} \]

\[\text{H}_2\text{N} \]
\[\text{CH}_3 \text{OH} \]
\[\text{valine} \]
\[\text{V} \]

\[\text{H}_2\text{N} \]
\[\text{CH}_2 \text{OH} \]
\[\text{leucine} \]
\[\text{L} \]

\[\text{H}_2\text{N} \]
\[\text{CH}_2 \text{COOH} \]
\[\text{isoleucine Ile} \]
\[\text{I} \]
<table>
<thead>
<tr>
<th>Structure</th>
<th>Name(s) / Codes</th>
<th>Stereochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatics</td>
<td>Phenylalanine, Phe, F</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Tyrosine, Tyr, Y</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Histidine, His, H</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Tryptophan, Trp, W</td>
<td>S</td>
</tr>
<tr>
<td>Alcohols</td>
<td>Serine, Ser, S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Threonine, Thr, T</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Cysteine, Cys, C</td>
<td>R (only one)</td>
</tr>
<tr>
<td></td>
<td>Methionine, Met, M</td>
<td>S</td>
</tr>
<tr>
<td>Sulfur-containing</td>
<td>Aspartic Acid, Asp, D</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Glutamic Acid, Glu, E</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Asparagine, ASN, N</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Glutamine, Glu, Q</td>
<td>S</td>
</tr>
</tbody>
</table>
Amino Groups

<table>
<thead>
<tr>
<th>Lysine*</th>
<th>Lys</th>
<th>K</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine*</td>
<td>Arg</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Proline*</td>
<td>Pro</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

Protonation state vs pH

<table>
<thead>
<tr>
<th>pH</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>Ammonium form</td>
</tr>
<tr>
<td>~7</td>
<td>Neutral form</td>
</tr>
<tr>
<td>>9-10</td>
<td>Carboxylate form</td>
</tr>
</tbody>
</table>

Synthesis of amino acids

a) Alkylation of ammonia

![Chemical reaction diagram]

b) General malonic ester synthesis

![Chemical reaction diagram]
Protein Structure

1. Primary structure
 Amino acid sequence

2. Secondary structure
 Local environment / fold
 (random coil, α-helix, β-sheet)

3. Tertiary structure
 Overall topology of protein
 fold at 3D structure
 (globular, etc.)

4. Quaternary structure
 Protein subunits
Notes on floating:
- Driven by hydrophobic effect
- Greasy (alkyl & aryl) side chains avoid water & are pushed to interior
- Polar residues stay on surface near water

Recall biological problems are mainly in aqueous environment.

Glycolate - I

from

Elastidium
acetobutylicum