CHEM 322 Organic Chemistry, 2nd Semester University of Delaware Spring 2011

- Instructors: Prof. Mary Watson (237 BRL, mpwatson@udel.edu) (Weeks 1-6) Prof. Donald Watson (205 LDL, dawatson@udel.edu) (Weeks 7-14) Office Hours: Wed, 10-11am, 308 QDH I have always had the feeling Lectures: Section 010: MWF 11:15 am - 12:05 pm, 101 BRL that organic chemistry is a **Section 011:** TuTh 2 – 3:15 pm, 101 BRL very peculiar science, that Midterms: Sat, March 5, 10 am – 12 pm, Smith 120/130 organic chemists are unlike Sat, April 9, 10 am – 12 pm, Smith 120/130 other men, and there are Sat, May 7, 10 am - 12 pm, Smith 120/130 few occupations that give more satisfactions [sic] Head TA: Craig Paquette (cmp@udel.edu) than masterly TA's: Srimoyee Dasgupta experimentation along the Amber Gietter old lines of this highly Peter Gildner specialized science." Tatsiana Haidzinskaya - Lawrence Joseph Neo Hu Jesse McAtee Henderson Discussions: Mon, 1–2pm, 308 QDH (Paquette) Thurs, 8–9am, 308 QDH (McAtee)
- Website: http://www.udel.edu/chem/CHEM322
- **Textbooks:** Organic Chemistry, 4th Edition By Maitland Jones & Steven Fleming Publisher: W. W. Norton & Co.

Chem 321/322 Organic Chemistry Lab Manual By Wigal et al.

Molecular Models: Darling ModelsTM (<u>www.darlingmodels.com</u>)

Lab Notebooks: Hayden-McNeil Student Lab Notebook with carbonless duplicate sets

Grades:	Midterms	40% (20% each for two highest scores)
	Final Exam	40%
	Labs	20%

Regrade requests must be submitted within 24 hours of the material being returned. Include a detailed written explanation of the suspected problem. Your midterms may be photocopied before they are returned. Do not change your midterms in any way if you are requesting a regrade. Altered exams returned for regrades will be considered an act of academic dishonesty. Please note: exams submitted for regrades will be regraded in their entirety.

The lowest of your three midterms will be automatically dropped.

Missed exams can be made up only for official, University-approved absences. You must provide an official, documented excuse for missed exams. If you are missing an exam due to a University-sponsored athletic event, you must provide your athletic schedule within the first 2 weeks of the semester. If you miss a midterm without providing an official, documented excuse, this midterm grade will be your automatically dropped midterm. Any make-up exams will be scheduled for shortly after the original exam. You must take the final exam to receive a completed grade for the course.

A curve will be applied to the final grades, and a plus/minus grading scale will be used.

Academic Dishonesty

Academic dishonesty will not be tolerated. Any student who commits academic dishonesty will be punished according to the University of Delaware's guidelines (<u>http://www.udel.edu/stuguide/09-10/code.html#honesty</u>).

Approximate Class Outline

Week (Dates)	Торіс	Reading
1 (2/7 – 2/11)	Conjugated π-systems	Ch. 12
2 (2/14 – 2/18)	Aromaticity	Ch. 13
3 (2/21 – 2/25)	Substitution of Aromatic Compounds	Ch. 13, 14
4 (2/28 - 3/4)	Substitution of Aromatic Compounds	Ch. 14
Sat, 3/5	Midterm 1	
5 (3/7 – 3/11)	Spectroscopy	Ch. 15
6 (3/14 – 3/18)	Spectroscopy	Ch. 15
7 (3/21 – 3/25)	Carbonyl Chemistry	Ch. 16
(3/28 – 4/1)	Spring Break	
8 (4/4 - 4/8)	Carbonyl Chemistry	Ch. 16, 17
Sat, 4/9	Midterm 2	
9 (4/11 – 4/15)	Carboxylic Acids and Derivatives	Ch. 17, 18
10 (4/18 – 4/22)	Carboxylic Acid Derivatives	Ch. 18
11 (4/25 – 4/29)	Carboxylic Acid Derivatives, Enols and Enolates	Ch. 18, 19
12 (5/2 – 5/6)	Enols and Enolates	Ch. 19
Sat, 5/7	Midterm 3	
13 (5/9 – 5/13)	Carbohydrates, Amino Acids	Ch. 22, 23
14 (5/16 – 5/19)	Carbohydrates, Amino Acids	Ch. 22, 23
TBA	Final Exam	

Recommended practice problems for each of the topics will be posted on the course website. It is strongly recommended that you work *all* suggested problems.

Labs

You must come prepared with pre-lab questions and appropriate sections complete in your notebooks. Your complete lab write-up, including post-lab questions is due at the start of your next lab period.

Week (Dates)	Experiment	Reference	Assigned Questions
1 (2/7 – 2/11)	No labs		
2 (2/14 – 2/18)	Nitration of Methylbenzoate	REAC0716	Pre-lab 1-3, Post-lab 1-3
3 (2/21 – 2/25)	Isolating Clove Oil	TECH0722, handout	Pre-lab 1-3, Post-lab 1-3
4 (2/28 - 3/4)	Aldehydes and Ketones	ANAL0728	Pre-lab 2,3; Post-lab 1,2
5 (3/7 – 3/11)	Aldol Condensation	SYNT0720	Pre-lab 1-4; Post-lab 1-3
6 (3/14 – 3/18)	Aspirin	SYNT0745	Pre-lab 1-5; Post-lab 1-3
7 (3/21 – 3/25)	No labs		
Spring Break	No labs		
8 (4/4 - 4/8)	Fisher Esterification	SYNT0713	Pre-lab 1-4; Post-lab 1,4
9 (4/11 – 4/15)	Grignard	Handout	Questions in handout
10 (4/18 – 4/22)	Reduction of Vanillin	Handout	Questions in handout
11 (4/25 – 4/29)	Wittig	Handout	
12 (5/2 – 5/6)	Qualitative	ANAL0727, handout	Pre-lab 1-7; Post-lab none
	Analysis/Unknowns*		
13 (5/9 – 5/13)	Qualitative	ANAL0727, handout	
	Analysis/Unknowns*		

* You must finish the Qualitative Analysis/Unknowns lab to pass the laboratory portion of the class.

<u>Lab safety:</u> All students must wear appropriate personal protective equipment during all labs: safety goggles, gloves, long pants, and close-toed shoes. Lab safety will be taken *very seriously*. You will be penalized if you neglect safety:

For first offense of the semester: Lose 20% of the points for that lab

For second offense of the semester (not per lab) and beyond: Immediate dismissal from lab and 0% for that lab.

CHEM 322 Course Learning Goals

After successful completion of this course, a student should be able to:

- 1. Describe the frontier molecular orbitals for conjugated π -systems and carbonyl compounds. (1)*
- 2. Understand the stabilizing effect of conjugation on electrons in π -bonds. (1)
- 3. Predict products, propose reaction conditions, and draw arrow-pushing mechanisms for reactions of dienes and allyl systems. (1)
- 4. Understand the concept of aromaticity. (1)
- 5. Predict products, propose reaction conditions, and draw arrow-pushing mechanisms for reactions of aromatic systems. (1)
- 6. Determine the identity of a chemical compound based on spectroscopic data. (1, 6)
- 7. Predict products, propose reaction conditions, and draw arrow-pushing mechanisms for reactions of carbonyl compounds. (1)
- 8. Predict products, propose reaction conditions, and draw arrow-pushing mechanisms for reactions of carboxylic acids and their derivatives. (1)
- 9. Understand the biological importance, structure and reactivity of carbohydrates and sugars. (1)
- 10. Understand the biological importance, structure and reactivity of amino acids. (1)
- 11. Safely perform a chemical reaction in a laboratory, making qualitative and quantitative observations of the experiment. (2, 6, 7, 8)
- 12. Prepare a laboratory report of an experiment they have performed. (10)

(*Numbers in parentheses indicate the departmental learning goals with which each course goal is aligned. Please see: <u>http://www.udel.edu/chem/goals.html</u>.)