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Abstract—At the University of Delaware, we are providing
ancillary services by controlling the bidirectional power transfer
between 15 EVs and the grid. To control this power transfer, a
set of algorithms, models and interactions is used, called a “GIV
(Grid Integrated Vehicle) mechanism”. In literature, many GIV
mechanisms are proposed. However, because these mechanisms
are evaluated independently in specific scenarios, their differences
are not always clear. In this paper, we take a first step in tackling
this challenge by comparing two different GIV mechanisms in the
same scenario at the University of Delaware: a decentralized and
a centralized mechanism. In the decentralized mechanism, which
is currently operational at our test environment, EVs decide
autonomously on the amount of power available for ancillary
services. In the centralized mechanism, a central server gathers all
EV information and makes a decision for all EVs. In evaluation,
both GIV mechanisms are compared with each other. Simulation
results show that the centralized mechanism outperforms its de-
centralized counterpart in terms of available power for ancillary
services. On the other hand, the decentralized mechanism enables
large-scale integration by distributing computations across all
EVs.

I. INTRODUCTION
Growing concerns about the environment and increasing

fuel prices are causing a shift towards EVs (electric vehicles).
The average vehicle in the US is only used an hour per day [6]
for driving 30 miles [9]. Since 30 miles of driving is less
than 10 kWh, with a modest charging rate of 6 kW, only 2
hours of charging are required. Even if EVs are not near a
plug all 23 hours, this simple calculation shows that EVs will
offer a lot of flexibility in timing and rate of their charging
power. Typically, EV aggregators are seen as the actors using
this charging flexibility [1]. For an EV aggregator, a wide
range of opportunities exist for intelligently controlling EV
charging. Examples are day-ahead load scheduling [17], and
the provision of ancillary services [4], [12].

In the GIV (Grid Integrated Vehicle) scenario at the
University of Delaware, we are providing regulation service
(an ancillary service) for PJM Interconnection, the largest
transmission system operator in the world [5]. In this paper, we
define a GIV scenario as the set of rules, regulations, market
mechanisms, and infrastructural constraints under which the
EVs their bidirectional power transfer is controlled. In the GIV
scenario at the University of Delaware, EVs need to respond
within seconds to regulation-up signals (charge less or inject
more) and regulation-down signals (charge more or inject less).
To control EV (dis)charging, the on-site EV aggregator uses a
“GIV mechanism”. In this paper, we define a GIV mechanism

as the set of algorithms, models and interactions used to
control the bidirectional power transfer between EVs and the
electricity grid.

In current literature, several GIV mechanisms are proposed
for providing ancillary serices. These mechanisms can be
classified as being either centralized or decentralized [15]. In
a centralized mechanism, the aggregator centrally gathers all
information about its EVs. In a decentralized mechanism, EVs
make local decisions, while exchanging a limited amount of
information with the EV aggregator.

Centralized GIV mechanisms for providing ancillary ser-
vices have been proposed in several recent articles, wherein
the GIV control problem is defined as a central optimization
problem. In [3], dynamic programming is used to maximize
revenue for providing regulation services. In [12], a linear
optimization problem is defined for buying EV energy at a spot
market, and simultaneously providing two types of ancillary
services (regulation and spinning reserves). The centralized
GIV mechanism in this paper defines a quadratic optimization
problem to comply with PJM’s scoring mechanism, a variable
POP (preferred operating point), and combines the EVs’ asym-
metric regulation power to a combined symmetric regulation
power, introducing complex coupling constraints.

Decentralized GIV mechanisms for ancillary services are
proposed in [8], in which EVs autonomously control their
charging to locally measured frequency deviations. In [16],
EVs react to frequency deviations, while flattening transformer
load. In this paper, we present the current model of our
own GIV mechanism, first introduced in [4], in which EVs
autonomously decide upon their amount of regulation power.

While many centralized and decentralized GIV mecha-
nisms exist, it is often unclear how these mechanisms compare
to each other, because they have been evaluated in different
GIV scenarios. To take a first step in addressing this challenge,
we compare a decentralized and centralized GIV mechanism
in the same GIV scenario at the University of Delaware. The
main contributions of this paper are:

1) Description of the GIV scenario at the University of
Delaware, wherein a decentralized GIV mechanism
is operational (section II and III).

2) Description of a centralized GIV mechanism for EVs
in the PJM regulation market (section IV).

3) Comparison of both GIV mechanisms in simulations
of the GIV scenario at the University of Delaware
(section V).
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II. DESCRIPTION OF THE GIV SCENARIO AT THE
UNIVERSITY OF DELAWARE

In this section, we give an overview of GIV scenario
at the University of Delaware. In this scenario, an EV fleet
is controlled by an EV aggregator, which operates in the
regulation service market of PJM. First, the structure of this
market is described (section II-A). Afterwards, the physical
EV infrastructure is described (section II-B).

A. PJM regulation market

PJM (Pennsylvania-New Jersey-Maryland) Interconnection
is the largest TSO in the world, servicing 13 states in the
Northern and Midwestern US. PJM itself is part of the larger
Eastern Interconnection, one of the two major synchronized
grids in North America. As for any TSO, PJM’s two main
objectives are (i) to maintain its grid infrastructure, and (ii)
assure a continuous balance between generation and demand.
To achieve the latter goal, PJM operates several power markets.

Each PJM power market contributes to the grid balance
by providing a different type of power: baseload power is
provided for the typical daily demand, peak power is provided
during periods of exceptionally high demand, spinning reserves

are activated for reacting to an unplanned event (e.g generator
failure) and regulation power is used to keep the grid frequency
and voltage within acceptable limits. Spinning reserves and
regulation power together make up the largest value of the
ancillary service markets. In these markets, GIV competes
most strongly, because of a capacity payment to be online
and available [7]. At the University of Delaware, we bid on
the regulation market, because of its typical highest value in
the ancillary service market.

To provide regulation services for PJM, bids need to
be submitted via the online eMKT platform [10]. Each bid
contains an amount of regulation power P bid

h

for hour h, and
an offer price. A bid needs to be submitted at least 60 minutes
before its operating hour, when the market for the respective
hour is cleared (figure 1). According to PJM market rules,
bids need to contain a symmetric regulation power (equal
regulation-up and regulation-down) in multiples of 100 kW. In
the UD scenario, the offer price is kept low (because marginal
costs are low), which results in an almost certain acceptance
of our bids.

Once a bid is submitted and accepted, the EV aggregator
needs his EV fleet to follow an online regulation signal
during hour h, which is limited by the bid’s regulation power
(figure 2a). According to conventional regulation performed by
generators, a positive regulation signal represent regulation-up,
and a negative signal regulation-down. The regulation signal
changes on a 2-4 second base, and should be followed around
a chosen operational midpoint, called the POP (preferred
operating point). In figure 2b), the actual power transfer of
the EV fleet is depicted, which is the POP superposed by the
regulation signal. The quality of the response to a regulation
signal is quantified by PJM through a performance score, and
is used to compute a participant’s revenues. This score is based
on the difference between signal and response in terms of
absolute difference (i), delay time (ii) and correlation (iii). All
three factors are equally weighted in the performance score.
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Fig. 1. Bidding process in the PJM regulation market.
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Fig. 2. (a) Regulation bids for two hours, and PJM’s resulting online
regulation signal. (b) Matching regulation response of the EV fleet, around
the POPs.

B. EV infrastructure

Currently, the EV fleet at the University of Delaware
consists of 17 Mini-E’s [14], and 3 eBoxes [11]. These EVs
have a battery of 35kWh and have a maximum power transfer
(both charging and discharging) of 12 kW. To be able to
charge the EVs simultaneously, the campus is equipped with 15
EVSEs (Electric Vehicle Supply Equipment) connected to the
local power grid. Each EVSE enables communication between
its connected EV and the aggregator server (on which the EV
aggregator agent is running).

In figure 3, the agent architecture is shown. Each agent
represents an autonomous decision making element, which is
reponsible for achieving the goals of its respective owner. All
the agents and their goals:

• EV aggregator agent
The goal of the aggregator agent is bidding in the PJM

market, and complying with these bids by dispatching

regulation power in response to PJM’s online regula-

tion signal.

• EV agent
The primary goal of the EV agent is charging its EV

battery before departure time, and the secondary goal

is providing regulation power to the aggregator agent.



During the clearing phase for a bid hour h, PJM looks at the
advertised bids and picks the resources to provide regulation
for the given hour. For each selected resource, PJM assigns a
regulation power to the resource (aggregator) that may be up
to the amount bid by that resource:

0  P assign
h

 P bid
h

(1)

At UD, we choose an offer price below the average clearing
price, which typically results in full assignment of our bid
by PJM. During the actual regulation hour h, PJM sends a
regulation request P req

t

to the aggregator that may vary on a 2-4
second cycle. Each time the aggregator receives this regulation
request, a fraction of each EVs’ regulation power is dispatched,
based on a division factor µ (figure 3). This division factor is
calculated at each regulation time t in hour h:

P req
t

> 0 ) µ =
P req
tP

Nev
i=1

iP +
t

(2)

P req
t

< 0 ) µ =
P req
tP

Nev
i=1

iP -
t

(3)

In these formulas, iP +
t

and iP -
t

represent the respective
regulation-up and regulation-down power each EV i makes
available at time t. This information is stored by the EV
aggregator in a “regulation matrix” (table I).
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The regulation power each EV makes available is calcu-
lated differently in the centralized and decentralized mech-
anism. In the decentralized mechanism, EV agents au-
tonomously decide upon their regulation power. Consequently,
each EV agent has to offer symmetric regulation power to
assure the sum of their individual regulation is also sym-
metric (8n 2 {1, . . . , N}, nP+

t

= nP�
t

). In the centralized
mechanism, the aggregator agent decides the regulation-up
and regulation-down power of each individual EV. In this
mechanism, individual EVs can provide assymetric regulation
power, because the aggregator can combine them to provide
symmetric regulation power.

III. A DECENTRALIZED GIV MECHANISM

The GIV mechanism used by the EV aggregator in our
GIV scenario is a decentralized (agent-based) mechanism, first
introduced in [4]. In this section, the current model of this
solution is presented.

In the decentralized mechanism, an EV agent au-
tonomously calculates its regulation-up and regulation-down
power. In figure 4, this calculation method is shown in an
artificial example. In this example, the EV has a battery
capacity of 25 kWh, and an initial SoC (State of Charge) of
5 kWh. The EV is plugged in for 5 hours, and the maximum
power transfer is 10 kW. The primary goal of the EV is
ensuring sufficient charge in its battery for the next trip. In
our example, the driver requires 20 kWh for his next trip. To
determine the regulation-up and regulation-down power the EV
can offer in each hour, we use a POP calculation method.
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req
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Fig. 3. PJM continuously sends a regulation signal to the aggregator agent,
which divides the signal between EVs.

Fig. 4. Example of calculating regulation-up and regulation-down power by
a single EV.

Before each hour (this control granularity �t is a parameter
that can be chosen), the POP calculation method will be used
to calculate the provided regulation power. In the first hour, the
SoC can advance to 0 kWh (discharge at 5 kW) or to 15 kWh
(charge at 10 kW) and every value in between. Consequently,
during the first hour, the EV can choose a charging power
between +5kW and -10kW. To provide symmetric regulation
power (required by PJM), the POP is chosen in the middle
of 5kW and -10kW, at -2.5 kW. Finally, The regulation power
provided by this EV is 7.5 kW around its POP of -2.5kW. Once
the hour ends, the SoC has progressed to a value inbetween 0
and 15 kWh, depending on PJM’s regulation signal (red arrow).
For each consecutive hour, the POP and regulation power are
determined in the same way. The example was chosen to cover
all type of constraints on the regulation power (table II).



TABLE II. FIVE DIFFERENT TYPE OF CONSTRAINTS.

Hour 1 (0h - 1h) Discharging limited by minimum SoC.
Hour 2 (1h - 2h) No limitations.
Hour 3 (2h - 3h) Charging limited by maximum SoC.
Hour 4 (3h - 4h) Discharging limited by required SoC.

Hour 5 (4h - 5h)
Charging limited by maximum SoC.
Discharging limited by required SoC.

The inclusion of constraints based on the required SoC
(hour 4 and 5) differs from the initial description of the de-
centralized mechanism [4]. As we are continuously improving
our decentralized mechanism, inclusion of these constraints
maximizes regulation power.

IV. A CENTRALIZED GIV MECHANISM

In this section, a centralized GIV mechanism is presented.
This mechanism gathers information about all EVs, and solves
an optimization problem which optimizes the collective sym-
metric regulation power. The result of this optimization is
the individual regulation power and POP for each EV. The
complete quadratic optimization problem:

min
P
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F is defined as the set of all EVs, and F
c,t

⇢ F is the
subset of EVs which are grid-connected at optimization time
t. Newly arrived EVs are taken into account by repeating the
optimization at intervals of length �t.

Equation 4 defines the objective function as the minimiza-
tion of the quadratic difference between the bids P bid

t

and
collective regulation power of all EVs. The difference is chosen
quadratically to divide the error over the scheduling period.
This is done to make sure that the response does not fall back
to zero, to maintain correlation between request and response.
Notice that P bid

t

has a granularity of �t, which is the hourly

bid (figure 1) divided into intervals wherein the optimization
is repeated.

Constraint 5 defines the SoC path for each EV between
a minimum and maximum SoC limit (equivalent as shown
in figure 4). These energy limits enforce an arrival SoC at
t = 0, and a range of possible departure SoCs at t = tdep.
Furthermore, constraint 6 enforces the slope of this charging
path to be limited by the EVs’ maximum power transfer.

Constraints 7- 8 define the regulation-down power of the
EVs. In constraint 7, the regulation power is limited by
the minimum and maximum SoC limit. In constraint 8, the
regulation power is limited by the maximum charging power.
Constraints 9 and 10 define these limits for the regulation-up
power of each EV. Constraint 11and 12 define the POP, which
is limited by an EV’s maximum power transfer and energy
limits.

Constraint 13 expresses the change in SoC, which depends
on the POP and the regulation signal followed. Because the
regulation signal is not known beforehand, the change in
SoC caused by the regulation signal has to be estimated.
This estimation depends on the EV’s offered regulation-up
and regulation-down power (e.g when an EV only offers
regulation-up power, the SoC will decrease). For the PJM case,
we were able to use a linear model with parameters ↵ and �.
In case of a less predictable regulation signal, more complex
models are possible, e.g a probabilistic model [12]. Deviations
in these models are accounted for by repeatedly solving the
optimization problem.

Finally, the decision variable in our optimization problem is
constraint by the sum of available regulation-up and regulation-
down power (coupling constraints 14 and 15). The definition
of one decision variable within these constraints enforces a
symmetric regulation power.

V. EVALUATION

In this section, the decentralized and centralized mecha-
nism are compared with each other. First, both mechanisms
are compared in terms of their ability to offer regulation power
(section V-A). Then, the computational scalability of both
mechanisms is analyzed (section V-B).

A. Comparison of regulation capabilities

For comparing both mechanisms in terms of regulation
capabilities, we evaluate both mechanisms in simulations of
the operational GIV scenario at the University of Delaware
(section II). As 15 EVSEs are available in this scenario, 15 of
the mini-E’s are simulated. Currently, these EVs are driven on-
campus at irregular times. In this evaluation, we assign each
EV the same artificial probability distribution for arrival and
departure times (figure 5). For both mechanisms, 15 minutes
is chosen as the optimization step �t (instead of an hour in
the example of figure 4).

In our GIV scenario, the EV aggregator has to decide when
to bid for regulation power. Since 15 EVs are being controlled,
each with a maximum power transfer of 12 kW, the total
maximum power transfer is 180 kW. However, not all EVs
are continuously available. For example, at the end of the first
hour, an average 50% of all EVs is available (⇡90 kW). As



PJM only allows regulation bids in increments of 100 kW,
different bid scenarios with 100 kW bids are defined, ranked
from low-risk to high-risk (figure 6).

In the first experiment, both mechanisms are compared in
bid scenario 3 with mini-E’s of varying degrees of charging
flexibility. In this experiment, the mini-E’s have an arrival
SoC of 17.5 kWh with a standard deviation of 10 kWh,
and a required SoC based on daily commuting trips in the
US [2]. These parameters amount to a wide range of charging
flexibility. In figure 7, the fractions of regulation power for 100
simulations per mechanism are shown. While the centralized
mechanism was able to provide 96 to 100 percent of the
regulation power requested in bid scenario 3, the decentralized
mechanism achieved a lower performance.

In the second experiment, both mechanisms are compared
in all 5 bid scenarios. To focus on the variations between these
scenarios, the EV charging flexibility is kept in a smaller range,
by setting the arrival SoC of each EV at 17.5 kWh. In figure 8,
the resulting total regulation power for each scenario is shown.
While the decentralized mechanism’s regulation power drops
in scenario 3, the centralized mechanism was still able to
provide this regulation power. Consequently, the centralized
mechanism is able to provide symmetric regulation power of
100 kW for 4 hours (400 kW-h 1), while the decentralized
mechanism can only guarantee 300 kW-h.

In the third experiment, both mechanisms are compared
in a scenario wherein any bid size is allowed (cfr. 100 kW
bids in previous experiments). The goal of this experiment
is comparing both mechanisms in terms of their maximum
attainable regulation power. Figure 9 shows the offered regu-
lation capacity in 100 simulations with 15 EVs (same charging
flexibility parameters as in the first experiment). The amount
of regulation capacity in this experiment (500 - 750 kW-h) is
significantly higher than in previous experiments. The average
regulation capacity provided by the decentralized mechanism
is 630 kW-h, while the centralized mechanism provides an
average regulation capacity of 664.5 kW-h.

B. Comparison of computational scalability

In this part of the evaluation, both mechanisms are com-
pared in terms of computational scalability. Computational
scalability is important for large-scale integration of GIV
mechanisms in a scenario with more electric vehicles. In the
US alone, around 250 million vehicles are currently regis-
tered [13].

In the decentralized mechanism, each EV agent calculates
its own regulation power. This allows for calculations to
be distributed among all EV agents. The only calculation
dependent on the number of EVs is a simple summation of
all regulation power values by the EV aggregator.

In the centralized mechanism, the GIV control problem
is solved as a convex optimization problem (formula 4- 15).
This type of optimization problem is known to be bound by
a polynomial. In an experiment, the GIV control problem was
solved for 1 to 1,000 EVs (figure 10). Results show that the
execution time is bound by a cubic polynomial. A critical limit

1The unit for regulation capacity is kW-h; the ability to provide one kW of
regulation power for an hour.
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is 1 hour, reached around 160 EVs, which is the duration of
a bid in PJM’s regulation market2.

2Simulations are performed using a workstation with Intel Xeon processor
(3.46 GHz, 12 MB cache, 4 cores) and 12 GB of ram.



In summary, the centralized mechanism outperforms the
decentralized mechanism in terms of regulation power. This
was shown in three simulation experiments: EVs with a
varying degree of charging flexibility in a single bid scenario,
different 100 kW bid scenarios, and an unconstrained bid sce-
nario. Nonetheless, the practical applicability of the centralized
mechanism is questionable, due to its limited computational
scalability.

VI. CONCLUSION

At the University of Delaware, researchers are controlling
the bidirectional powerflow between EVs and the grid to
provide regulation power. To choose between diffent GIV
mechanisms, an in-depth comparison between these mech-
anisms is necessary. In this paper, a first comparison was
made between a decentralized and centralized GIV mechanism.
Simulations show that the centralized mechanism could be
beneficial in the current small-scale scenario (15 EVs), but
the lack in computational scalability could hinder large-scale
roll out.

Current and future work focuses on further comparison
of centralized and decentralized GIV mechanisms in terms of
various criteria. Furthermore, we are continuously improving
our decentralized GIV mechanism by integrating centralized
scheduling features in a distributed manner.
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