Seminar in Business Processes and Operations Management

BUEC 865 Dr. C. Kydd

Exponential Smoothing Model

Uses a combination of most recent data point and most recent forecast

Weight (smoothing constant) is assigned to data and forecast points
Weights can be varied between 0 and 1

Exponential Smoothing Model formulas

$$F_{t+1} = \alpha D_t + (1-\alpha) F_t$$

$$F_{t+1} = F_t + \alpha (D_t - F_t)$$

 F_{t+1} = Forecast for the next period (Period t+1)

 $\alpha = \text{Smoothing constant} \quad (0 \le \alpha \le 1)$

 D_t = Actual data for current period (Period t)

 F_t = Forecast for current period made in last period

Smoothing constant

 α = smoothing constant

$$0 \le \alpha \le 1$$

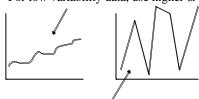
.1 $\le \alpha \le .4$ usually

$$\begin{array}{ll} Forecast \\ for \ next \ pd. \end{array} = \ \alpha \ \begin{bmatrix} current \\ demand \end{bmatrix} + \ (1-\alpha) \begin{bmatrix} previous \\ forecast \end{bmatrix}$$

Exponential Smoothing Model - formulas

$$F_{t+1} = \alpha D_t + (1-\alpha) F_t$$
or
$$F_{t+1} = F_t + \alpha (D_t - F_t)$$

 F_{t+1} = Forecast for the next period (Period t+1)


 α = Smoothing constant (0 <= α <=1)

 D_t = Actual data for current period (Period t)

 F_t = Forecast for current period made in last period

Smoothing Constant

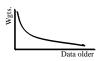
For low variability data, use higher α

For high variability data, use lower α

Exponential Smoothing Formulas

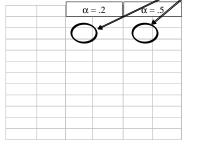
$$F_{t+1} = \alpha D_t + (1-\alpha) F_t$$

$$F_t = \alpha D_{t-1} + (1-\alpha) F_{t-1}$$


$$\begin{aligned} F_{t+1} &= \alpha \; (D_t) + (1\text{-}\alpha) \; [\; \alpha D_{t-1} + (1\text{-}\alpha) \; F_{\; t\text{-}1} \;] \\ F_{t-1} &= \boxed{\alpha D_{\; t\text{-}2} + (1\text{-}\alpha) \; (F_{\; t\text{-}2})} \end{aligned}$$

Exponential Smoothing Formulas (cont.)

$$\begin{split} F_{t+1} &= \\ &\alpha D_t + (1 \text{-}\alpha) \left[\ \alpha D_{t\text{-}1} + (1 \text{-}\alpha) \left(\alpha D_{t\text{-}2} + (1 \text{-}\alpha) F_{t\text{-}2} \right) \right] \end{split}$$


Exponential Smoothing Formulas (cont.)

$$\begin{array}{cccc} \underline{Data} & \underline{Weight} & \underline{\mathit{example}} \\ D_t & \alpha & .3 \\ D_{t-1} & \alpha \, (1\text{-}\alpha) & .21 \\ D_{t-2} & \alpha \, (1\text{-}\alpha)^2 & .147 \end{array}$$

Comparison of Exponential Smoothing Models

E.S.
$$\alpha = .2$$

E.S.
$$\alpha = .5$$

$$MAD = 9.31$$

$$MAD = 7.37$$

$$Bias = 8.39$$

Bias
$$= 4.83$$

E.S. with $\alpha = .5$ yields better MAD and Bias, so provides better model

Exponential Smoothing model - tracking signals with $\alpha = .2$

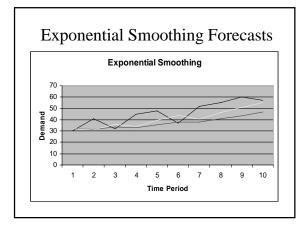
$$T.S._1 = -1$$

$$T.S._6 = 4.5$$

$$T.S._2 = 1.3$$

$$T.S._7 = 5.7$$

$$T.S._3 = 1.4$$


$$T.S._8 = 6.9$$

$$T.S._4 = 2.9$$

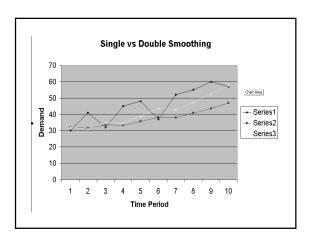
$$T.S._9 = 8.0$$

$$T.S._5 = 4.1$$

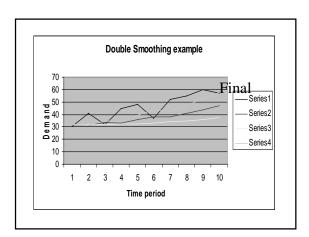
$$T.S._{10} = 9.0$$

Pd.	D_{t}	F_t'	F _t "	$F_t'-F_t''$	$b_t = F_t'' - F_t$
1	30	32	32	0	
2	41	31.6	32	-0.4	0
3	32	33.5	31.9	1.6	-0.1
4	45	33.2	32.2	1	0.3
5	48	35.6	32.4	3.2	0.2
6	37	38.1	33	5.1	0.6
7	52	37.9	34	3.9	1
8	55	40.7	34.8	5.9	0.8
9	60	43.6	36	7.6	1.2
10	57	46.9	37.5	9.4	1.5

Double Smoothing (cont.)


Final Forecast	_e_	64.3
		$MAD = \frac{64.3}{9} = 7.1$
31.2	9.8	$\frac{1111D}{9} = \frac{7.11}{9}$
35	-3	
34.5	10.5	
39	9	
43.8	-6.8	Dies 43.10 _ 4.70
42.8	9.2	Bias= $\frac{43.10}{9}$ = 4.79
47.4	7.6	9
52.4	7.6	
57.8	-0.8	

Comparison of Exponential Smoothing Models


E.S. $\alpha = .2$ E.S. $\alpha = .2$ (double)

MAD = 9.31 MAD = 7.14 Bias = 8.39 Bias = 4.79

Double E.S. yields better MAD and Bias, so provides better model

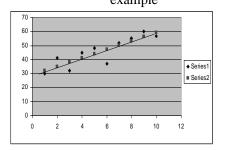
Problem 1: Forecasting

You are given sales data for 10 periods.

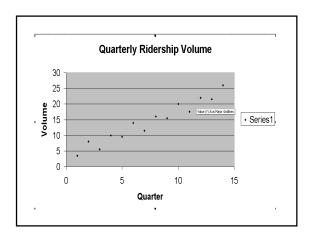
- 1. Apply the four time series models to forecast sales for periods 6-11.
- 2. Compare results and suggest which is best and why.

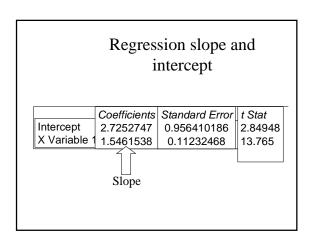
For these, use sales and time period only.

Problem 1 Data						
Period	Sales	Mkt price	GNP	CPI		
1	35725	57.63	115	161.2		
2	47180	78.50	125	170.5		
3	54965	62.88	132	181.5		
4	63220	53.75	140	195.4		
5	66315	50.00	150	217.4		
6	57730	45.00	163	246.8		
7	62700	38.50	178	272.4		
8	60025	62.38	195	289.1		
9	74590	74.38	206	298.4		
10	83900	78.38	213	311.1		


Simple Linear Regression

Attempts to fit a straight line to set of data points


Uses least squares estimate to determine line (minimizes sum of squared deviations between points and line)

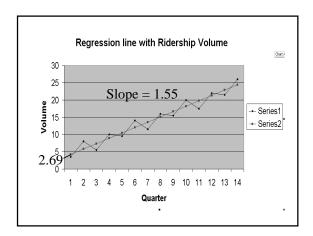

Uses equation Y = a + bX where Y is dependent variable, X is independent variable, a is Y-intercept, b is slope

Simple Linear Regression - example

Simple Linear Regression Mass Transit Quarterly Ridership Data					
Qtr., X 1 2 3 4 5 6 7 8 9 10	Volume, Y 3.5 8 5.5 10 9.5 14 11.5 16 15.5 20	$Y=a+bX$ or $T_x=a+bX$ Dependent var. Independent var. $a=Y-intercept$ $b=slope$			

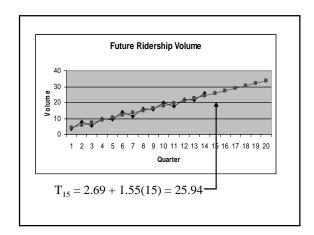
Simple Linear Regression

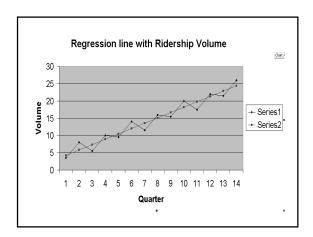
Quarterly Ridership Problem (cont'd.)


$$T_x = a + bX = 2.69 + 1.55X$$

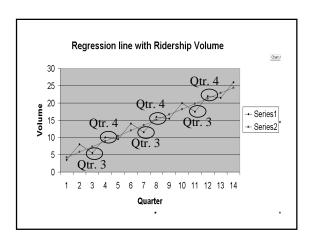
Y-intercept $\stackrel{\frown}{\Box}$ slope

To predict future values of T_x (points on the regression line):


$$T_{15} = 2.69 + 1.55(15) = 25.94$$


$$T_{16} = 2.69 + 1.55(16) = 27.49$$

 $T_{17} = 2.69 + 1.55(17) = 29.04$


$$T_{17} = 2.69 + 1.55(17) = 29.04$$

SUMMARY OUTPUT			
Regression Statistics			
Multiple R	0.96976268		
R Square	0.94043966		
Adjusted R Square	0.9354763		
Standard Error	1.69420473		
Observations	14		

Incorporating Seasonality

1. Compute measure of seasonality

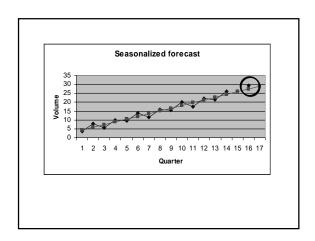
$$S = \frac{Y}{T} = \frac{Actual\ volume}{Computed\ trend\ value}$$

- 2. Take average $\overline{(S)}$ of all relevant S's
- 3. Apply S to appropriate values of T to forecast into the future

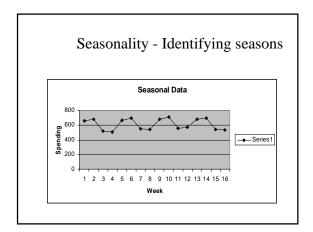
Finding Seasonal Factor for Quarter 4

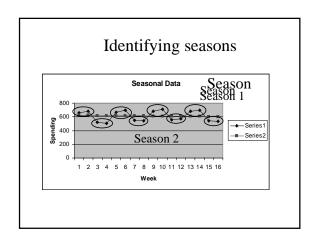
1. Compute measure of seasonality

$$T_4 = 2.69 + 1.55 (4) = 8.89$$
 $T_8 = 2.69 + 1.55 (8) = 15.09$
 $T_{12} = 2.69 + 1.55 (12) = 21.29$
Computed


$$S_4 = 10/8.89 = 1.12$$

 $S_8 = 16/15.09 = 1.06$
 $S_{12} = 22/21.2 = 1.03$
2. Average S's $\overline{S}_4 = 1.07$


Finding Seasonal Factor for Quarter 4


3. Apply \overline{S} to appropriate values of T

$$T_{16} = 2.69 + 1.55(16) = 27.49$$

Adjusted
$$T_{16} = 27.49 (1.07) = 29.41$$

Problem 1 (cont'd.)

Use simple regression to forecast values for sales, market price, CPI and GNP for periods 11-13.

Comment on how well each forecast fits the data.

In each case, time will be the independent variable.

Use POM for Windows/Forecasting/Time series module.

Forecasting Quiz

Find forecast for April and May using

- 1) 2-month moving average
- 2) Exp. Smooth. with $\alpha = .4$

	<u>Actual</u>	Forecast
Jan.	30 units	
Feb.	45 units	
Mar.	55 units	50
Apr.	65 units	
May	70 units	

Forecasting Quiz

Find forecast for April and May using

3) Double smoothing model with $\alpha = .4$ (again assume F"_{Mar} = 50)

Which model works best here?

1	1
1	7

Forecasting Quiz - Solution

Find forecast for April and May using

1) 2-month moving average

$$F(April) = (45 + 55)/2 = 50$$
 $e = 15$

$$F(May) = (55 + 65)/2 = 60$$
 $e = 10$

$$MAD = 25/2 = 12.5$$

Bias =
$$25/2 = 12.5$$

Forecasting Quiz

Find forecast for April and May using

2) E.S. model with α =.4

$$F(April) = .4(55) + .6(50) = 52$$
 $e = 13$

$$F(May) = .4(65) + .6(52) = 57.2 e = 12.8$$

$$MAD = 25.8/2 = 12.9$$

Bias =
$$25.8/2 = 12.9$$

Forecasting Quiz

Find forecast for April and May using

3) Double smoothing model with $\alpha = .4$

(again assume F"_{Mar} = 50)

$$F''(April) = .4(50) + .6(50) = 50$$

$$F''(May) = .4(52) + .6(50) = 50.8$$

Forecasting Quiz