

Problem 5, Solution Part 1: Price elasticity coefficients: $\frac{\text{change in Ave. Qd}}{\frac{\text{change in Ave. P}}{2}}$ $E = \frac{\text{change in Qd/Ave. Qd}}{\text{change in P/Ave. P}}$ Super Burger: $\frac{50}{\frac{450+400/2}{0.50}}$ 5.45+4.95/2 = 1.22

Chapter 8, Problem 3

Part 1:

The average room rate for a property with multiple types of room is the weighted average of each of their room rates. If we let the single room rate = xThen the double rate = x(x+10)And the king = 2x

So, 0.2x + 0.6(x+10) + 0.2(2x) = \$75x = \$57.50

Part 2: 0.3333(x) + 0.3333(x+10) + 0.3333(2x) = \$75= \$53.75

Problem 5, Solution
Part 1:
Price elasticity coefficients: % <u>change in Ave. Qd</u> %change in Ave. P
E = <u>change in Qd/Ave. Qd</u> change in P/Ave. P
Super Burger: <u>50</u>
$\frac{450+400/2}{0.50}$
5.45+4.95/2 = 1.22

Problem 5, contd.

Golden Chicken $E = \underline{1000-800}$ $\underline{1000+800/2}$ $\underline{5.95-6.45}$ 5.95+6.45/2 = 2.71

Ocean Delight $E = \frac{400 - 600}{400 + 600/2}$ $\frac{6.95 - 6.45}{6.95 + 6.45/2} = 6.45$

This suggests that the demand is elastic

Problem 8, Solution

Part1:

Net Income	\$60,000
Pretax income	80,000
Interest expense	40,000
Undist. Op. expenses	480,000
Direct exp.	61,320
Total Rooms rev.	661,320
Ave. room rate = \$661,320/	30x.80x365

= \$75.49

Problem 8, contd.

Part 2:

Part 3:

At 80% occupancy, there are 24 rooms sold each night. Of the 24 rooms, 40% are double = 10rooms.

If single rate is \$x, then double rate is (x+10). Total rooms sales per night = 661,320/8760 rooms = 1,812

So, 14x + 10(x+10) = \$1,1812 $\begin{array}{c} x = \$71.33 \\ x+10 = \$81.33 \end{array}$

Problem 8, contd. \$661,320 - 20,000 Total Rooms revenue Less: Rest. Dept. profit Net rooms revenue 641,320

Ave. room rate = $\frac{641,320}{8,760}$

= \$73.21

Room rate decrease: \$75.49 - \$73.21 = \$2.28

Problem 13, Solution

A	terna	ive .	1:

Net income	\$280,000
Pre-tax income	400,000
Interest expense	960,000
Fixed charges	700,000
Undist. Op. Exp.	3,000,000
Less: Food income	- 300,000
Telephone	- 10,000
Direct expenses	1,067,625
Total w/o Mgt. Fees	5,817,625

Problem 13, contd.

If Mgt. Fees represent 3% of room sales then, 97% of room sales equals \$5,817,625

Therefore, total rooms sales = $\frac{$5,817,625}{0.97}$

= \$5,997,552

Total room nights: 300x0.65x365 = 71,175 room nights

Therefore Ave. room rate = $\frac{$5,997,552}{71,175}$

= \$84.26

Problem 13, contd. Alternative 2: Room sales = \$6,111,672 Total room nights = 76,650

Total room nights Ave room rate

Alternative 3:

Room sales Total room nights Ave. room rate

= \$6,918,189 = 71,175 = \$97.20

= \$79.73

Problem 13, contd.

Alternative 4:

Room sales= \$7,279,390Total room nights= 82,125Ave. room rate= \$88.64

Alternative 5:

 Room sales
 = \$7,423,215

 Total room nights
 = 87,600

 Ave. room rate
 = \$84.74