Assessment Case Study:
University of Delaware’s
Undergraduate Research Program
Conrado M. Gempesaw II (gempesaw@udel.edu)
Joan S. Bennett (jbennett@udel.edu)
Andrew L. Zydney (zydney@engr.psu.edu)
Karen W. Bauer (kbauer@udel.edu)

UD Program’s Purpose and Design
Students learn through research apprenticeships with faculty
- Open to students in every major department and class.
- About 600-700 students per year participate.
- Involvement lasts typically 1-3 years; summers important.
- Students gain increasing independence and responsibility.
- Students present work at symposia and poster sessions
- Seniors in university thesis program prepare research proposals, present work-in-progress to peers, give an oral defense of their theses.

Faculty Mentors
About 2/3 of UD faculty provide undergraduate research opportunities
- Over 90% in engineering, physical, and life sciences
- Over 80% in social, behavioral, economic sciences
- Over 60% in humanities
- Over 55% in arts
- Over 50% in mathematical sciences

Board of Senior Thesis Readers
20 faculty members facilitate the University-wide senior thesis program and serve as outside readers on thesis committees.

Undergraduate Research Program Services
- Solicit UR opportunities from faculty and publicize.
- Help departments & other units to develop UR opportunities.
- Directly advise about 300 students per year.
- Provide funds for UR project supplies and expenses.
- Provide summer and winter term UR scholarships.
- Arrange summer UR residence and enrichment programming.
- Coordinate University-wide senior thesis program.
- Mount poster sessions and symposia for UR presentations.

Program Staff:
- Faculty coordinator
- Professional coordinator
- Administrative assistant
- Graduate assistant

Program Facility:
- Student reading & computing room/presentation practice space
- Conference room
- Staff offices and workroom
Why Assess? Why Now (1997)?

Funds for large-scale study potentially available
- NSF RAIRE competition

Visibility desirable
- We anticipated the results would be strongly positive.
- It would benefit our own institution and higher education to demonstrate and analyze accomplishment.

Stakeholders’ Influence on Assessment Design

NSF requested a *summative* assessment:
- Answers to our research questions must be of interest to the general public and the U.S. Congress
- Studies should yield assessment models adaptable for use by other research universities

UD would also like *formative* information:
- What could we learn from these studies that would benefit our own future student and faculty program participants?
- Could we also possibly contribute new methods of assessment (conduct research *on* assessment)?

Challenges to Be Met

- Articulation of, and agreement upon, the research questions
- Researching possible methods and instruments
- Organizing existing sources of data (e.g., creating an alumni data base from paper files)
- Securing staff to help with data gathering and specialized analyses
- Obtaining subjects’ participation, esp. longitudinally
- Finding enough time to complete the studies

Program Factors Influencing Assessment Design

Age of program
- Alumni available
- 20 years of student and faculty evaluations available

Central administration support
- Institutional research expertise available

Faculty support
- Faculty readily called into service

Role of Advisory Board

- Adds unique perspectives on undergraduate research experience
- Assists with writing / obtaining grants
- Provides oversight of assessment efforts
- Acts as liaison with faculty as a whole
- Adds leverage with administration
- Increases dissemination of results

UD Advisory Board

- **Chemical Engineering**
 - Andrew Zydney
 - Roy McCullough
- **Physics**
 - George Watson
 - Harry Shipman
- **Chemistry / Biology**
 - Hal White
 - Deborah Allen
- **Math/Science Education**
 - Barbara Dach
Perspectives on UG Research

- Director of University’s Undergraduate Research Program
- Faculty who actively involve undergraduates in their research programs
- Faculty with non-traditional approaches to incorporating research in the classroom
- Asst Dean for Student Affairs
- Others (?)

Grant Writing

- Strong Advisory Board looked impressive to funding agencies
- Well-defined role of Advisory Board strengthened overall proposal
- Faculty provided critical input into proposal based on personal experiences
- Editorial Assistant provided hands-on assistance with actual grant preparation

Oversight of Assessment

- Are we asking the right questions?
- Are we using assessment tools that will give useful (and believable) results?
- What correlations should be explored?
- What confounding factors need to be examined?
- How do we interpret the data?
- What conclusions can we draw and defend?

Liaison to Community

- Critical for effective communication of results to broader faculty
- Provided “believability” to faculty and administration
- Assisted in preparation of papers and presentation of results
- Increased visibility of assessment effort both on- and off-campus

Conclusions

- Strong Advisory Board is critical to overall success of assessment activities
- Composition of Advisory Board should be based on goals of assessment effort and identification of key constituencies
- Active participation of Advisory Board requires strong leadership (and persistence) from director of assessment effort

First Steps for UD Assessment Official

- Become familiar with nuances of Undergraduate Research Program, its faculty and its students
- Think, plan, develop preliminary methodology skeleton
- Collaborate with Advisory Board
 - Discuss what was to be measured
 - Articulate major issues, questions
 - Discuss potential measures and methods
Undergraduate Research Program

Major Questions That Emerged

Does participation in undergraduate research:
- Sharpen ability to think critically, creatively, synthetically?
- Develop problem-solving, leadership, teamwork abilities?
- Increase intellectual curiosity and desire to learn?

Do alumni perceive benefits of UR in same ways as current students?

What motivates faculty to participate; what are the obstacles?

What educational outcomes do faculty perceive for students who participate in research?

Undergraduate Research Program

How Did We Come to the Chosen Method and Measures?

- Clear to me that no one measure would answer the questions
- Important to have non-UR comparison group
- Important that subjects be unaware of the studies’ connection to undergraduate research
- Important to examine data from multiple perspectives—alums, faculty, current students

Undergraduate Research Program

Value of Multiple Measures

- Some constructs such as cognitive growth are hard to measure
- Academic and psychosocial behavior change are easier but still tough to separate from extraneous factors
- Multiple measures enabled us to look at different educational outcomes affected by UR

Undergraduate Research Program

Non-UR Comparison

- Important to examine the value-added of UR over and above regular curriculum
- Can help identify where the UR program is meeting its goals, objectives
- Can help serve as a gauge for subgroup findings—gender, major, honors
- Non-UR comparison meant larger sample size needed

Undergraduate Research Program

Value of a Longitudinal Study

- Resource intensive—but the best way to study student change over time
- Examine individual student growth over time
- Eliminate bias that can be made when comparing students in cross-sectional analyses
- Examine similarities and differences between self-report and objective measures
- Help examine appropriateness of some standardized measures (e.g., critical thinking and reasoning)

Undergraduate Research Program

Important to Consider Use of Resources

- Comparison group = larger sample
- Large sample = statistical power
- Larger sample = impracticality of more qualitative examination through individual interviews
- High attrition rate would threaten generalizability of study, so follow-up is important
- Larger sample = more personnel time to follow up with nonrespondents
Value of Multiple Perspectives
- Faculty study enabled us to examine levels of UR involvement and what faculty think students learn
- Also enabled us to better understand why faculty participate; in what ways they benefit
- Alumni have the advantage of distance and seeing how educational experiences helped with career or graduate school
- Students can accurately describe their perceptions of their own academic experiences
- Multiple perspectives help tell a robust story

Undergraduate Research Program
Assessment of the University of Delaware’s Undergraduate Research Program

Four Major Components
I. Content Analysis
 - previous years’ formative evaluations
 - science and engineering sophomores
II. Alumni Survey
 - all majors: UR and non-UR
III. Faculty Survey
 - all science and engineering departments
IV. 4-Year Longitudinal Study: Class of 2000
 - UR and non-UR science and engineering students

Content Categories: Perceived Learning
- Increased technical skills………………………………..96%
- Increased independence………………………………57%
- Insight into graduate school…………………………..45%
- Teamwork learned and valued…………………………43%
- Learned to work with obstacles and ambiguities……..37%
- Learned to think creatively/synthetically………………32%
- Increased desire to learn………………………………32%
- Self-confidence gained………………………………..28%
- Communication skills improved………………………24%
- Understanding “knowledge”……………………………24%

Content Categories: Comparison to Course Work
N of letters in which this content category was mentioned:
154/183 (84%)
- Learned more through research: 113 (73%)
- Learned as much through research: 39 (25%)
- Learned more through courses: 2 (1%)
Undergraduate Research Program

Content analysis web posting:

University of Delaware’s RAIRE web site
www.udel.edu/RAIRE/

II. Alumni Survey

- Alumni survey containing a large set of questions about the undergraduate experience. Survey completed in spring 1998.
 - Responses from 986 UD alumni
 - Graduating classes of 1982 through 1997
- Respondents from 75 different majors:
 - 59% science or engineering
 - 41% arts, humanities or social science
- Responses fell into three groups related to UR:
 - 418 had been undergraduate researchers served by the URP
 - 213 had conducted UR but had not received URP services
 - 355 had not engaged in undergraduate research

Alumni Survey Results (selected):

- Growth in 8 general cognitive and behavioral skills greater for UR than non-UR alums
 - Carry out research
 - Develop intellectual curiosity
 - Acquire information independently
 - Understand scientific findings
 - Analyze literature critically
 - Speak effectively
 - Act as a leader
 - Possess clear career goals
- Growth in 3 factors greater for URP than non-UR alums
 - Science, math, logic, problem-solving
 - Literature, language, mastery of contexts
 - Personal initiative and communication

Undergraduate Research Program

Alumni Survey Results (selected)-2:

- Education beyond the baccalaureate
 - URP alums were about twice as likely to pursue doctoral degrees
- Employment
 - Compared to URP alums, about 1/3 more non-UR alums were employed in a career not related to major

Alumni Survey Results (selected)-3:

- Alumni ratings for benefit of UR involvement:
 - High benefit perceived for even one research semester.
 - Higher benefits perceived by alums who had devoted greater amount of time to research
 - Very highest ratings given by alums who had completed a senior thesis through the URP
- Involvement in non-research out-of-classroom activities:
 - UR alums participated in co-curricular activities and on-campus employment at the same or greater rate than non-UR alumni
 - Internships related to major also rated as highly beneficial by both UR and non-UR alums

Undergraduate Research Program

Alumni survey publications:

Undergraduate Research Program

III. Faculty Survey

- A survey of 155 science and engineering faculty was completed in fall of 1999.
- Over 90% of UD faculty in these fields participate regularly in UR.
- Objective was to examine:
 - Motivation of faculty to participate in UR
 - Accommodations faculty make to facilitate UR
 - Faculty perceptions of student learning through UR (compared to alumni perceptions)

Faculty Survey Results: Motivation

- Desire to influence career of talented young students
 - 75% said “important” or “very important” motivator
 - Another 20% said “moderately important” motivator
- Students’ contribution to faculty member’s research
 - 50% said “important” or “very important”
 - 78% said students influenced their own thinking about research
- Students’ contribution to faculty member’s quality of life
 - 41% said “important” or “very important”
- Undergraduates’ contribution to graduate students’ education
 - 39% said “important” or “very important” (primarily in engineering)

Faculty Survey Results: Accommodations made

- 46% reported structuring to accommodate undergrads
 - These faculty took more undergrads (avg. 7.95 over 5 years compared to avg. 6.77 for those who made no adjustments)
 - 91% of these faculty had graduate students helping
- Accommodations fell into four categories:
 - Create smaller problems
 - Assign exploratory problems
 - Integrate undergrads into existing lab/project framework
 - Designate money/time for undergraduates

Faculty Survey Results: Student skills gained-1

- Highest-rated skills (by 77-80% of respondents):
 - Develop intellectual curiosity
 - Think logically about complex materials
 - Understand scientific findings
- Also highly rated (by 63-69% of respondents):
 - Synthesize/use information from diverse sources
 - Solve problems independently
 - Approach problems creatively
 - Maintain openness to new ideas
 - Work as part of a team

Faculty Survey Results: Student Skills Gained-2

- Faculty perceptions of student skills gained generally agreed with alumni perceptions.
- Faculty who made accommodations for undergraduates perceived much larger gains in the higher order skills.
- Faculty who supervised undergraduates for two or more years rated gains significantly higher in 9 of 11 skills.
- No correlation was found between number of hours per week spent supervising students and skill gains perceived.
- Faculty for whom quality of life was a strong motivator perceived higher educational gains for their students.

Faculty Survey Results: Graduate students

- Most faculty (73%) believed that graduate students who helped to mentor UR students gained valuable teaching experience and greater mastery of their subjects.
- Faculty with larger numbers of graduate students also had larger numbers of undergraduate researchers.
- Thus, institutional support for graduate students—when combined with a strongly institutionalized undergraduate research program—could be leveraged to improve undergraduate educational experience.

Faculty Survey Results: Graduate students
Faculty Survey: Some Conclusions

- Departmental/college encouragement was not a primary motivator and had no correlation with perceive skill gains; therefore, the institution’s most effective role appeared to be indirect:
 - Providing student recruitment/advisement network as well as support services and funds for both students and faculty
- Since both length of students’ research commitment and accommodations made by faculty correlated strongly with student gains, the institution should:
 - facilitate long-term student involvement; facilitate faculty’s efforts to adapt their research operation to include undergraduates

Undergraduate Research Program

Goals:
- Capture currently enrolled students
- Ensure the impossibility of respondent bias
- Measure change in skills gained over time
- Maintain comparison groups for all measurements
- Compare results from several types of instruments

Longitudinal Study Instruments

- No existing standard instrument can objectively measure the cognitive and behavioral gains that self-report, alumni perception, and faculty observation find in undergraduates who participate in research.
- To have established reliability in the instruments used for our study, we decided not to invent our own instruments.
- Instead, we combined three standard instruments—measuring (1) college student academic behaviors and gains (CSEQ, a self-report instrument), (2) logical thinking (WGCTA), and (3) personality characteristics (NEO-FFI)—with a reliable instrument still under development that attempts to measure (4) “reflective judgment” or epistemological sophistication (RCI).
- UDAES’ goal was to test this combination as a viable method for longitudinal study of learning achieved through undergraduate research.

Select Preliminary Longitudinal Study Results - 1

- Personality: Although overall, students decreased in neuroticism and increased in openness to experience, no significant differences were found between UR and non-UR students
- CSEQ: UR students perceived greater increases for themselves than did non-UR students in
 -- academic effort (this self-reported information was also reflected in students’ course registrations)
 -- scientific and technological skills

Faculty survey publication:

Select Preliminary Longitudinal Results - 2

- **WGCTA:** Biological/Physical Sciences/Chemical Engineering majors with intensive research involvement showed larger increase over 4 years in critical thinking (logic) than did non-research students in these majors.

- **RCI:**
 1. Biological/Social Science majors with intensive research involvement showed larger increase in reflective judgment over 3 years than did majors in these subjects with a smaller amount of research or no research experience.
 2. Women with intensive research involvement showed higher gains in reflective judgment over 3 years than women with a smaller amount of research or no research experience.

Longitudinal Study: Some Preliminary Recommendations

- Conduct similar studies at institutions where there is a larger N overall and especially a larger N of high-achieving students who do not do research.
- Develop a new paper/pencil self-report inventory of general cognitive and psycho-social skills to replace the lengthy CSEQ.
- Add a general test of motivation in the first and final years.
- Eliminate WGCTA, and administer RCI using new test dilemmas with content appropriate to students’ disciplinary interest.

Impact of Assessment -- 1

- Improvements in UG research programs
 - Confirmed emphasis on early involvement
 - Increased participation in Senior Thesis
 - Greater recognition of role of graduate students
 - Increased participation of students and faculty in UG research
 - Added support for PBL and other efforts to infuse research throughout UG experience

Impact of Assessment -- 2

- Development of new/expanded UG research programs at the University of Delaware
 - New NSF REU sites in ChE and CE
 - Delaware Biotechnology Institute
 - McNair, HHMI, others
- Increased funding for UG research experiences at UD

Longitudinal Study--Some Limitations

- Sample size (limited number of analyses with statistical power)
- Only one institution; only science and engineering students (limited ability to generalize)
- Epistemological test dilemmas needed with scientific/technological content (possible limit in ability to engage interest of some students)
Undergraduate Research Program

Impact of Assessment -- 3

- Increased visibility of UG research at UD
- Leadership role for UD in national discussions of UG research and assessment
- Enhancement of University reputation
- Benefits for student recruiting
 - Prospective undergraduates
 - New graduate students via REU sites