

UD's GK-12 Project: Improvement of science education in vocational technical high schools through collaborative learning and coteaching

Katie Skalak GK-12 fellow

GK-12 Project Leaders

George Watson Physics

Deborah Allen Biology

Kate Scantlebury Chemistry

John Madsen Geology

Amy Quillen

Richard Donham MSERC, Biology

2006 GK-12 Fellows

2007 GK-12 Fellows

Mary Boggs Biology

Tom Ekiart Physics

Erin Foster Biology

Kristy Longsdorf Biochemistry

John Meyer Physics

Nate Nazdrowicz Entymology

Chris Russell Physics

Jeff Spraggins Biochemistry

2006 Teachers

Dr. Ralph May Department Chair Chemistry & Integrated Science **Mrs. Carol Buswell** Integrated Science & Physical Science **Mr. Ronney Bythwood Physics** & Physical Science **Mr. Brian Gross** Biology

Mrs. Ingrid Anderson Biology & Physical Science

> Mr. Mike Kittle Biology & Physical Science

Mrs. Sharon Horrocks Special Education Science

Mr. Brian Heeney Biology

2007 Teachers

Mr. Dan Hailey **Department Chair** Physics & **Physical Science Mrs. Elizabeth Nowak** Integrated Science Mr. Brian Gross Biology

> Ms. Krista Webb Physical Science

Mr. Kevin Madigan Integrated Science& Physical Science

> Ms. Tara Saladyga Physical Science

> Mrs. Phyllis Meyer Biology

Mr. Brian Heeney Biology

- Through this experience, graduate students can gain a deeper understanding of their own STEM research.
- In addition, the GK-12 program provides institutions of higher education with an opportunity to make a permanent change in their graduate programs by incorporating GK-12 like activities in the training of their STEM graduate students.

Anticipated Outcomes

Fellows:

- communication,
- teaching,
- collaboration
- team building skills
- Teachers: professional development opportunities
- Students: enriched learning
- Strengthened and sustained partnerships in STEM between institutions of higher education and local school districts.

NSF GK-12

- The program has been in operation for 9 years
- Funds approximately 600-900 fellows/year
- Throughout its history has worked with
 - 1. more than 6,000 graduate students
 - 2. over 8,000 teachers
 - and more than 550,000 students

Delaware GK-12 Grant

- \$1.7 million over three years
- Funding up to nine UD graduate students
- Paired with high school science teachers in NCCVT district
- To create a learning community of teaching teams to examine and reflect on current issues in education while addressing critical needs in science education in vocational technical high schools.

Fast Facts about NCCVT District

- Number of Schools: 4
- Student Enrollment: 3,386 (49% female; 39% minority)
- % of Special Education Students: 14.8%
- Average Daily Attendance: 95.3% (State = 92.6%)
- ◆ Graduation Rate: 96.1% * (State = 83%)

All students at NCCVT take the full academic requirement needed to meet the requirements for a high school diploma.

Students who meet the criteria also earn career program of study certificates.

CAREER PROGRAMS OF STUDY

BUSINESS, COMMUNICATION, AND COMPUTERS CLUSTER Academy of Finance **Business Software** Applications **Business Technology** Computer Network Administration **Digital Media** Graphic Arts Retail Careers Technology Web and Print Technology

CONSTRUCTION CLUSTER Carpentry **Electrical Trades General Construction** Heating, Ventilation, and Air Conditioning Industrial Mechanics/Millwright Technology Masonry Plumbing Sheet Metal Fabrication Welding/Fabrication Technologies

CAREER PROGRAMS OF STUDY

HEALTH SERVICES CLUSTER

Dental Assisting Dental Lab Technology Emergency Medical Services Medical Assisting Nursing Technology Physical Therapy Services Practical Nursing PUBLIC & CONSUMER SERVICES CLUSTER

Cosmetology Culinary Arts Early Childhood Education Legal Administrative Assistant Production and Imaging Technology Public Service

CAREER PROGRAMS OF STUDY

SCIENCE, ENERGY AND DRAFTING TECHNOLOGIES CLUSTER

Academy of Manufacturing and Pre-Engineering

Biotechnology

Chemical Lab Technology

Electronics

Environmental Landscaping

Technology

Power Plant Technology

Technical Drafting

TRANSPORTATION CLUSTER

Auto Body

Auto Technology

Aviation Technology

Engine Technology

Career Areas at Howard High School

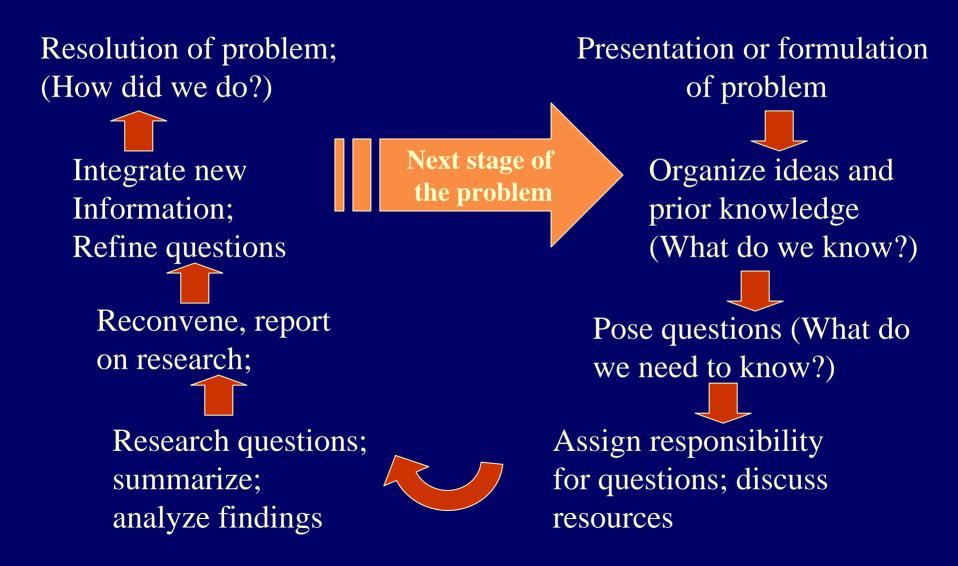
- Academy of Finance
- Carpentry
- Computer Network Administration
- Cosmetology
- Culinary Arts
- Dental Assistant
- Electrical Trades
- Nurse Technicians
- Public Service

Delaware GK-12 Activities

- In summer workshops, teaching teams are introduced to a number of innovative teaching strategies, including problembased learning (PBL).
- During the academic year, Fellows engage in coteaching with their teacher partners.
- Fellows gain a better understanding and appreciation of the complexities and nuances of teaching science in high school.
- Teaching teams have the opportunity to develop PBL activities, aligned with curricular needs, for students to experience the benefits of guided-inquiry learning environments.

What is Coteaching?

- Teaching at the elbow of the other, with multiple teachers
- Focus on learning of ALL students
- Supportive environment for analyzing and critiquing practice
- Opportunity to learn aspects of teaching that are not easily verbalized
- Link between theory and practice


What are the Common Features of PBL?

Learning initiated by a problem.

- Problems based on complex, real-world situations with no single 'right' answer.
- All information needed to solve problem is not given initially - students identify, find, and use appropriate resources.
- Students work in permanent groups.
- Students gain new information through self-directed learning.
- Instructors act as facilitators and designers of learning experiences and opportunities.

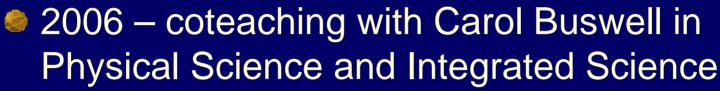
PBL: The Process

Effective PBL Activities...

Relate to real world, motivate students
Require decision-making and analysis
Are designed for group-solving
Pose open-ended questions that encourage discussion
Incorporate course content objectives

Provide opportunities to develop thinking, communication, research, and other skills

Connect to students' prior knowledge and understandings (and extend them)


We Use PBL to:

Motivate learning by connecting science course content to real world situations

Assess content understanding to inform future instruction

Foster development of reasoning, communication, information retrieval, and team-building skills

My role as a GK-12 fellow

2007 – lesson study and data collection at Howard High School

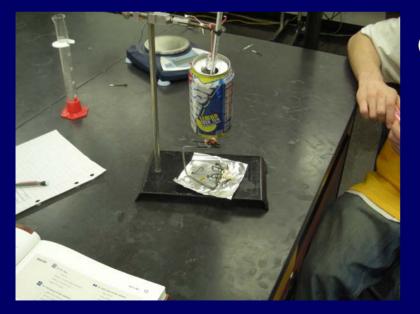
Other fellows engage in coteaching at Delcastle

2006 Goals

- Incorporate actual research into the classroom setting
- Higher level transfer through problembased learning strategies
- Targeting these activities to the DE state standards

General Activities

- More labs, hands-on activities, demonstrations, presentations
- Transfer tasks:
 - 1. Inquiry
 - 2. Material Separation lab
 - 3. Plate tectonics
 - 4. Astronomy Museum exhibit
 - 5. Ecology: Hg contamination



Newton's 1st Law

Newton's 3rd law

Comparing Energy Sources

Presentations

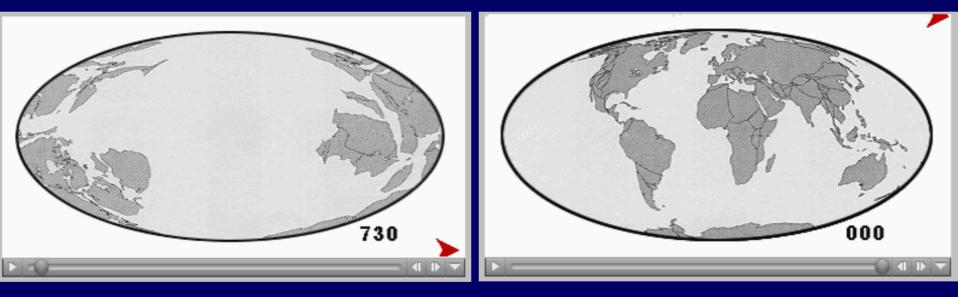
Fundamentals of geology and plate tectonics

Rapa Nui as a model for resource exploitation and ecological disaster

Transfer Tasks: Inquiry

Goals:

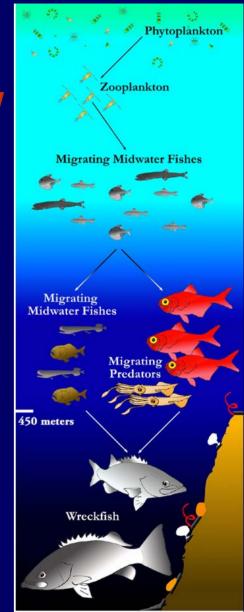
- Devise an experiment that will test the effects of salt on temperature
- Write their own procedure, materials, etc.


Transfer Tasks: Material Separation

- Student put in role of coastal geologist
- Must separate a "contaminated mixture" into components
- Student devise their own materials and methods

Plate tectonics

Quicktime animation with guided questions


Transfer Tasks: <u>Astronomy exhibit</u>

Goals:

- Understand basic astronomy principles
- Assessed on: ability to work in groups, understanding of principles, creativity, thoughtfulness
- Peer assessment

Transfer tasks: Food webs and Hg cycling

- Scenario: Hg contamination of a recreational water source
- Food webs, conservation of mass, human impact, water as a resource
- Various roles for students to select:
 - 1. Doctor
 - 2. Citizen
 - 3. Scientist
 - 4. Environmentalist
 - 5. Industry employee
 - 6. Mayor
- Town hall meeting, concept map

Hg in the environment

- Students are initially presented with a medical mystery
- Presented with Hg contamination problem, select a role
- Facilitated by presentations and guided research
- Present findings, engage in debate
- Lanscape concept map of water cycle, food webs, bioaccumulation, and human impact

Journaling

Organized, focused journaling
 Prompt assessment
 Emphasizing critical thinking and writing skills
 Provides students with an opportunity to

reflect (self-assessment)

Lesson Study

Lesson study is a Japanese approach to instructional improvement. It is a cycle in which teachers work together

- 1. To consider their long-term goals for students,
- 2. Bring those goals to life in research lessons,
- Conduct the lesson (with one team member teaching and others gathering evidence on student learning and development)
- 4. Collaboratively observe, discuss, and refine the lessons.
- 5. Teach the revised lesson in another classroom to study and improve it again.

Lesson Study Steps

- 1. Form a lesson study group
 - Members, schedule, ground rules
- 2. Focus the lesson study
 - Theme, subject area, unit
- 3. Plan the research lesson
 - Long-term goals, data collection plan
- 4. Teach and observe the lesson
- 5. Discuss and analyze the lesson
 - Focused discussion on data, revisions
- 6. Reflect and plan
 - Re-teach the lesson

Data collection

- Focus on the classroom as research opportunity
- Collect data on student understanding, misconceptions
- Formative assessment probes to address misconceptions
- Videotaping lessons, journaling, blogging, interviews
- Summary report to teachers
- Publication?

Reflections on GK-12 experience

Communicate science Understand how students learn Work with experienced educators Engage and motivate high school students Learn and implement effective teaching strategies

Future of GK-12

- 1. Continued focus on graduate students with STEM research
- 2. Continue regional meetings
- 3. Disseminating information through partnerships and workshops (also websites).
- 4. Fellows activities integrating research into the classroom.
- 5. International component to projects

Acknowledgments The students The GK-12 project leaders George Watson, Kate Scantlebury, John Madsen, Deborah Allen, Richard Donham, Amy Quillen NSF for funding Howard High school teachers **Carol Buswell Delcastle High school teachers** 2006 and 2007 GK-12 fellows Research advisor: Jim Pizzuto

