Fundamental Forces of the Universe
There are four fundamental forces, or interactions in nature.

- Strong nuclear
- Electromagnetic
- Weak nuclear
- Gravitational

Strongest

Weakest
Strong nuclear force

- Holds the nuclei of atoms together
- Very strong, but only over very, very, very short distances (within the nucleus of the atom)
Electromagnetic force

- Causes electric and magnetic effects
 - Like charges repel each other
 - Opposite charges attract each other
 - Interactions between magnets
- Weaker than the strong nuclear force
- Acts over a much longer distance range than the strong nuclear force
Weak nuclear force

- Responsible for nuclear decay
- Weak and has a very short distance range
Gravitational force

- Weakest of all fundamental forces, but acts over very long distances
- Always attractive
- Acts between any two pieces of matter in the universe
- Very important in explaining the structure of the universe
Remember…

- The weak nuclear force is NOT the weakest of the fundamental forces.
- GRAVITY is the weakest force, but most important in understanding how objects in the universe interact.
Nuclear Reactions

- There are two kinds of nuclear reactions:
 - Fusion
 - Fission

- Protons and neutrons are the two most important subatomic particles in the nucleus and participate in these reactions.
Fusion

- Fusion is the process of combining nuclei of atoms to make different atoms.

- This reaction is going from SMALL to LARGE particles.

- Think of fusing two things together.
Fusion

- Nuclear fusion happens at the sun.
- One atom of hydrogen-3 and one atom of hydrogen combine to form a helium atom, a neutron and lots of energy!!!
Fusion

★ Where does the energy come from?
★ Energy is gained when the two hydrogen atoms break apart.
★ Some of this energy is used up to create the helium atom, but the rest is given off as light.
★ Mass is converted to energy!
 ★ E = mc² (c = 3.0 X 10³⁸ m/s)
 ★ Since the speed of light is so large even a small mass will be converted to a very large energy.
Fission

- Fission is the process of breaking up the nucleus of an atom.
- This reaction is going from LARGE to SMALL particles.
- Think of breaking two things apart.
Fission

- Nuclear fission happens on earth.
- Nuclear fission begins when a neutron hits the nucleus of a large atom.
- Adding this neutron makes the nucleus unstable and it splits into two smaller nuclei and two neutrons.
Fission

235U
If there are other 235U atoms nearby, the neutrons that came from splitting the first 235U nucleus can hit other atoms.

The nuclei of these other atoms will release more neutrons and split more 235U atoms.

This is called a *chain reaction*.
Nuclear Fission
Chain Reaction

- ^{235}U
- Neutron
- Fission Product
Radioactivity

- Radioactivity is the process where the nucleus emits particles or energy.

- There are three types of radioactive decay:
 - Alpha decay
 - Beta decay
 - Gamma decay
Alpha decay

- A particle with 2 protons and 2 neutrons is released from an unstable nucleus.

- Alpha decay can be stopped by clothing, skin, a few centimeters of air, or cardboard.
Beta decay

- This occurs when a neutron in the nucleus of a radioactive isotope splits into a proton and an electron.
- The electron is emitted.
- Beta decay can be stopped by dense clothing or wood.
Gamma decay

★ This involves the release of high-energy, electromagnetic radiation from the nucleus of the atom.

★ Gamma rays have even more energy than X-rays.

★ It can only be stopped with thick walls of concrete or lead.
Radioactive Decay

<table>
<thead>
<tr>
<th></th>
<th>Alpha decay</th>
<th>Beta decay</th>
<th>Gamma decay</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Protons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Neutrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is released?</td>
<td>An alpha particle and energy</td>
<td>An electron and energy</td>
<td>A gamma ray (high energy) and energy</td>
</tr>
</tbody>
</table>
Half-Life

<table>
<thead>
<tr>
<th>Time (years)</th>
<th>Fraction of element left</th>
<th>Amount left (g)</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1/2</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1/4</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3000</td>
<td>1/8</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Half-Life

- The half-life of a radioactive element is the **TIME** it takes for **HALF** of the radioactive atoms to decay to stable ones.

- If there are 80 grams of a radioactive element that has a half-life of 1000 years, then after 1000 years half of the element, or 40 grams of the element, will remain.

- Now that there are only 40 grams left, how many grams will be left after another 1000 years has passed?
 - There will be only 20 grams remaining.
The number of half-lives that occur for an element is found by dividing the total time by the half-life of a radioactive element.

Half-life ÷ total time = # of half-lives

An element has a half-life of 1000 years. How many half-lives have occurred after 2000 years has passed?

Two half-lives because 2000 years ÷ 1000 years = 2
Half-Life

- To find the fraction of the original amount think of the original amount as 1 and then divide by 2.
 - \(\frac{1}{2} \), one-half is how much remains after one half-life occurs.

- If two half-lives occur then divide the original amount by 2 twice.
 - \(\frac{1}{(2 \times 2)} = \frac{1}{4} \), one-fourth is how much remains after two half-lives occur.

- What do you do if three half-lives occur?
 - \(\frac{1}{(2 \times 2 \times 2)} = \frac{1}{8} \), one-eighth is how much remains after three half-lives occur.
Half-Life Practice Problem #1

- The radioactive isotope Fluorine-11 has a half-life of 11.0 s. How many half-lives occur in 11.0 s for Fluorine-11?
 - Only one half-life occurs because the half-life of Fluorine-11 is 11.0 s.

- If you started with 30 g, how many grams are left after 11.0 s?
 - Since one half life occurs, 30 g is divided by 2 and there are 15 g left.

- What fraction of the original amount is left?
 - One-half of the original amount is left.
The radioactive isotope Carbon-15 decays very fast and has a half-life of 2.5 s. How many half-lives occur in 5.0 s for Carbon-15?

Two half-lives occur because 5.0 s ÷ 2.5 s = 2.

If you started with 100 g, how many grams are left after 5.0 s?

Since 2 half-lives occur, the 100 g must be divided by 2 twice: 100 g ÷ 4 = 25 g.

What fraction of the original amount is left?

1 ÷ (2×2) = 1 ÷ 4 = 1/4, one-fourth remains.
Half-Life Practice Problem #3

- Neon-15 has a half-life of 30 s. How many half-lives occur in 1.5 min?
 - Three half-lives occur because 1.5 min = 90 s and 90 s ÷ 30 s = 3.

- If you started with 56 g, how many grams are left after 1.5 min?
 - Since 3 half-lives occurred, the 39 g must be divided by 2 three times: 56 g ÷ 8 = 7 g.

- What fraction of the original amount is left?
 - $1 ÷ (2 \times 2 \times 2) = 1 ÷ 8 = 1/8$, one-eighth is left.