CNUTIOL:Gravily otwork

What is Gravity?

- Write down anything you may know about gravity.
- Any examples of gravity
- Where you may find it or not find it!

What is Gravity?

- Gravity is an attraction that acts between any two objects that have a mass.
- However, this is only significant if one or both of the objects are very massive (like a planet, star, or moon).

An example of Gravity

- Gravity is why an apple falls from a tree.
- Why?
- Every object applies a gravitational force to every other object.
- When an apple falls (after the stem breaks) because the gravitational force between the apple and earth is much greater than the gravitational force between the apple and the tree.

Differences Between Gravity and Friction

- The force of gravity acts even when objects are not touching.
- The force of friction can never make an object speed up!
- Friction always points opposite the direction of motion, but sometimes gravity points in the direction of motion.

Mass and Distance

- Mass and Distance affect Gravitational Force.
- The force of gravity between two objects depends on their masses and on the distance between the two objects.

More about Gravity

- The greater the mass of an object, the larger the gravitational force it applies on other objects.
- Also, as the distance between two objects increases, the gravitational force between them decreases.

Gravitational Force

Formula

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{G}}=\frac{\mathrm{G} \times \text { mass }_{1} \times \text { mass }_{2}}{\text { distance }^{2}} \\
& \mathrm{~F}_{\mathrm{G}}=\frac{\mathrm{G} \times \mathrm{m}_{1} \times \mathrm{m}_{2}}{\mathrm{~d}^{2}}
\end{aligned}
$$

My name is Sir Isaac Newton and I figured this out!
d is the distance between the centers of the two objects.

G is called the "gravitation constant" it equals $6.673 \times 10^{-11} \mathrm{~N} \mathrm{x} \mathrm{m}^{2} / \mathrm{kg}^{2}$ and makes the units right!

More about Gravity

Gravity is the reason why weight and mass

 are two different measurements!!!Mass is related to the amount of matter in an object.

Weight = the force of gravity pulling on any object. (w=mxg)

So...which one would change if you were on the moon? Why?
Weight, because the force of gravity pulling on an object on the moon is only $1 / 6$ of that on the Earth!

QUESTION????

- Which pair has more gravitational force...you and your neighbor or you and the earth?
- How? (Use the formula... $F_{G}=G \times m_{1} \times m_{2} / d^{2}$)
- You (60.4 kg) and your neighbor (70.5 kg) and $\mathrm{d}=1.5 \mathrm{~m}$

$$
F_{G}=\frac{\left(6.673 \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \times 70.5 \mathrm{~kg} \times 60.4 \mathrm{~kg}}{(1.5 \mathrm{~m})^{2}}=1.26 \times 10^{-7} \mathrm{~N}
$$

- You (60.4 kg) and the earth $\left(5.9742 \times 10^{24} \mathrm{~kg}\right)$

$$
\begin{aligned}
& \text { - But what is your weight? }
\end{aligned}
$$

The Acceleration Due to Gravity:

- We can calculate it! At ground level:

What's this?
$9.80 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{g}$
But we can calculate " 9 " anywhere, caused by any object with mass!

$$
g=\frac{G \times m}{d^{<}}
$$

The Acceleration Due to Gravity:

- How does g change with altitude?

Altitude (m)	Distance From the Center of the Earth (m)	g due to the Earth's Gravity $\left(\mathrm{m} / \mathrm{s}^{\wedge} 2\right)$	What has This Altitude?

The Acceleration Due to Gravity:

- So what is g for the moon, on the surface of the moon?

$$
\begin{gathered}
g_{\text {moon }}=\frac{G \times m_{\text {moon }}}{\left(d_{\text {moon }}\right)^{2}} \\
g_{\text {moon }}=\frac{\left(6.673 \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \times\left(7.3477 \times 10^{22} \mathrm{~kg}\right)}{(1737100 \mathrm{~m})^{2}} \\
\mathrm{~g}_{\text {moon }}=1.62 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Gravity Practice Problems

1) $\begin{aligned} & m_{1}=15 \mathrm{~kg} \\ & \mathrm{~m}_{2}=996 \mathrm{~kg} \\ & d=596 \mathrm{~m}\end{aligned}$
2) $m_{1}=600 \mathrm{~kg}$ $m_{2}=72,684 \mathrm{~kg}$ $d=30 \mathrm{~m}$
3) $\mathrm{m}_{1}=232 \mathrm{~kg}$
$m_{2}=9,456 \mathrm{~kg}$
$d=56 \mathrm{~m}$
4) $m_{1}=7.35 \times 10^{22} \mathrm{~kg}$
$\mathrm{m}_{2}=5.97 \times 10^{25} \mathrm{~kg}$
$\mathrm{d}=3.84 \times 10^{8} \mathrm{~m}$

D	U	F	A
$\begin{aligned} & m_{1}=232 \mathrm{~kg} \\ & m_{2}=9,456 \mathrm{~kg} \\ & \mathrm{~d}=56 \mathrm{~m} \\ & \\ & \mathrm{G}=6.673 \times 10^{-11} \\ & \mathrm{~N} * \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$		$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$	$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$
S	$\begin{aligned} & F_{G}=\frac{(6.673}{} \\ & F_{G}=\frac{(1.46}{} \\ & F_{G}=4.67 \end{aligned}$	$\begin{aligned} & \left.\quad \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \\ & (56 \mathrm{~m})^{2} \\ & \left.\times 10^{-4} \mathrm{~N} \times \mathrm{m}^{2}\right) \\ & \times 136 \mathrm{~m}^{2} \\ & \times 1 \mathrm{~N}^{-8} \mathrm{~N} \end{aligned}$	$\times 232 \quad \mathrm{~kg} \quad \times 9456 \quad \mathrm{~kg}$

D	U	F	A
$\begin{aligned} & m_{1}= \\ & 600 \mathrm{~kg} \\ & \mathrm{~m}_{2}= \\ & 72,684 \mathrm{~kg} \\ & \mathrm{~d}=30 \mathrm{~m} \\ & \mathrm{G}= \\ & 6.673 \times 10^{-11} \\ & \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$		$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$	$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$
S	$\begin{aligned} & F_{G}=\frac{(6.673}{} \\ & F_{G}=\frac{(2.91}{} \\ & F_{G}=3.23 \end{aligned}$	$\begin{aligned} & \frac{\left.\times 100^{-11} N \times m^{2} / \mathrm{kg}^{2}\right)}{(30 \mathrm{~m})} \\ & \frac{\left.10 \mathrm{~N}^{-3} \mathrm{~N} \times \mathrm{m}^{2}\right)}{10 \mathrm{~m}^{2}} \\ & 10{ }^{-6} \mathrm{~N} \end{aligned}$	$600 \quad \mathrm{~kg} \times 72684 \quad \mathrm{~kg}$

D	U	F	A
$\begin{aligned} & \mathrm{m}_{1}= \\ & 7.35 \times 10^{22} \mathrm{~kg} \\ & \mathrm{~m}_{2}= \\ & 5.97 \times 10^{25} \mathrm{~kg} \\ & \mathrm{~d}= \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & \mathrm{G}=6.673 \times 10^{-11} \\ & \quad \mathrm{~N} * \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$		$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$	$F_{G}=\frac{G \times m_{1} \times m_{2}}{d^{2}}$

S
$F_{G}=\frac{\left(6.673 \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \times\left(7.35 \times 10^{22} \mathrm{~kg}\right) \times\left(5.97 \times 10^{25} \mathrm{~kg}\right)}{\left(3.84 \times 10^{8} \mathrm{~m}\right)^{2}}$
$F_{G}=\frac{\left(3.84 \times 10^{8} \mathrm{~N}^{\prime} \times{ }^{2}\right)}{1.47 \times 10^{17} \mathrm{~m}^{2}}$
$F_{G}=1.99 \quad \times 10^{21} \mathrm{~N}$

