Name:_____ Period:

<u>Kinetic Energy of a Rollercoaster!!!</u>

I. Pre - Lab:

Problem Question: How does the height of the marble on the roller coaster affect its kinetic energy?

Independent Variable:	
-----------------------	--

Dependant Variable: _____

Hypothesis: _____

Procedure: OK... I'll help you with this one!!! Pay attention and take notes here!!!

- Mass of the marble = .0282 kg
- d= .0191 m

Nam	e:	 	
Perio	d:		
II.	Lab:		

Collect Data: Record <u>ALL</u> data in <u>Data Table 1</u>.

Units: You will be measuring height in cm, but you need to convert to m!!! 100cm = 1m. So, you need to divide the cm by 100 to get m. (Ex. 15cm = .15m)

Data Table 1: HEIGHT and TIME

Name:				
Period:	 	-		

III. Post Lab:

 Calculations (velocity AND K_E): Use DUFAS and staple them to this packet. <u>Round to 3 decimal</u> <u>places.</u> (Ex. 0.258 J) Record all answers in Data Table 2. USE the P_E values from the <u>first lab</u>.

Data Table 2: Calculation Results

Position	Height (m)	Velocity (m/s)	Kinetic Energy (J)	Potential Energy (J)	Total Energy (J)
1					
2					
3					
4					
5					

2. Label the P_E and K_E values at each position on the rollercoaster:

Name:	 		-
Period:_			

Saladyga Fall 05

3. Fill in the <u>Results Data Table</u> Below:

*** Arrange the data in order from <u>lowest position to</u> <u>highest position.</u>

Height (m)	K _E (J)

4. Graph the information from the <u>RESULTS</u> data table. Remember to label, title, write units, stretch the data over the graph, etc. *Staple the graph to this packet*.

Name:	 		
Period:			

Saladyga Fall 05

٦

Name: Period:	Saladyga Fall 05
6 . As the marble travels over the rollercoaster tra- changes to K_E . According to the Law of Conservation Energy, energy cannot be created or destroyed, it co change forms. Does your data agree with this law? (HINT : Are all of your T_E values the same?)	ck, the P _E n of an only
Explain how it agrees or disagrees	
Suggest some reasons why the data did not agree Are there other forms of energy that we did not measure?)	. (Hint: