

UNIVERSITY of Infrastructure-Ready Biomass-Derived Oils		
Outline		
 The appeal of Biomass 		
 The significance of the infrastructure 		
 Infrastructure-ready options 		
 Reaction Engineering modeling tools to "Organize Evaluate and Improve" 		
Infrastructure-ready options		
 Some preliminary modeling results 		

UNIVERSITY OF Organizing, Evaluating and Improving

Integrated **modeling** of the reactions, process, economics and life-cycle analysis provides:

- Quantitative organization of current science and engineering knowledge base
 - · The "discipline" of modeling
 - Quantitative models identify science gaps and needs
 - New models can be assembled in ~ 5 years
- Quantitative *evaluation* of current science and engineering knowledge base
 - · Identifies needed improvements in technology and science
 - · Precise research targets for issues that need to be addressed
- Quantitative organization of improved science and engineering knowledge base
 - Provides scenarios for the adoption of technology platforms
 - · Objective technical basis for decision making

	putational Representations	
pentane		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Acjacency List Pentame 0 0 C: $(1,1)$, $(5,1)$, $(6,1)$, $(7,1); 1 0 C: (0,1), (2,1), (8,1), (9,1); 2 0 C: (1,1), (3,1), (10,1), (11,1); 3 0 C: (2,1), (4,1), (12,1), (13,1); 4 0 C: (3,1), (14,1), (15,1), (15,1); 5 0 H: (0,1); 7 0 H: (0,1); 9 0 H: (1,1); 10 0 H: (2,1); 13 0 H: (3,1); 14 0 H: (3,1); 15 0 H: (4,1); 16 0 H: (4,1); 17 0 H: (4,1); $	
	10	

Reaction Families

Mechanism Level

Radical

UNIVERSITYOF

- Bond fission .
- Hydrogen abstraction
- . β-scission Addition
- . Termination

Ionic

- Isomerization ٠
- Hydride shift
- . Methyl shift
- Hydrogen abstraction
- . β-scission
- Protonation
- Deprotonation •
- **Ring closure**
- Ring expansion ٠ •
 - Addition

Pathways Level

Ring

- Ring saturation
- Dealkylation
- Side chain cracking .
- Ring closure
- Ring opening
- . Ring isomerization
- Aromatization .

Oxygenate

- Hydration ٠
- Dehydration
- Tautomerization
- •
- Decarboxylation •
- Decarbonylation •
- Hydroxyl shift

Paraffin/Olefin

- Isomerization •
- Cyclization
- ٠ Hydrogenolysis
- Cracking •
- Double bond shift
- Methyl shift
- Hydrogenation
- Dehydrogenation
- Hydrodesulfurization •
- . Denitrogenation
- **Diels Alder**

- **Reactions Sent to Control File Via Front End UNIVERSITY**OF
- Process models defined by ٠ species/reaction combinations
- Large library of species and preprogrammed reaction types
- Combination of ٠ mechanistic and pathways level chemistries

