These descriptions describe soil properties or management considerations specific to a soil map unit and components of map units. These reports are generated from the National Soil Information System soil database for distribution to land users.

Ba--Bayboro Silt Loam
Bayboro component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .17. This soil is very poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Bo--Borrow Pits
Borrow Pits component makes up 60 percent of the map unit. The assigned Kw erodibility factor is .17. The slowest permeability within 60 inches is rapid. Available water capacity is moderate and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 8s. This component is not a hydric soil.

Co--Coastal Beaches
Coastal Beaches component makes up 85 percent of the map unit. The assigned Kw erodibility factor is .05. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. The soil has a moderately saline horizon. It is in nonirrigated land capability class 8w. This component is a hydric soil.

El--Elkton Sandy Loam, Thin Subsoil
Elkton component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Em--Elkton Silt Loam, thin Subsoil
Elkton component makes up 75 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Eo--Evesboro Sand
Evesboro component makes up 90 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

EsB--Evesboro Loamy Sand, 2 To 5 Percent Slopes
Evesboro component makes up 85 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

EsD--Evesboro Loamy Sand, 5 To 15 Percent Slopes
Evesboro component makes up 90 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7s. This component is not a hydric soil.

Ev--Evesboro Loamy Sand, Clayey Substratum
Evesboro component makes up 82 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3s. This component is not a hydric soil.

Fa--Fallsington Sandy Loam
Fallsington component makes up 80 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. It is in nonirrigated land capability class 3w. This component is a hydric soil.
Fs--Fallsington Loam
Fallsington component makes up 75 percent of the map unit. Prime farmland if drained. The assigned
Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60
inches is moderately slow. Available water capacity is very high and shrink swell potential is low.
This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches.
It is in nonirrigated land capability class 3w. This component is a hydric soil.

Jo--Johnston Silt Loam
Johnston component makes up 70 percent of the map unit. The assigned
Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60
inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is
frequently
flooded and is not ponded. The top of the seasonal high water table is at 0 inches.
It is in nonirrigated land capability class 7w. This component is a hydric soil.

Ka--Keyport Sandy Loam
Keyport component makes up 90 percent of the map unit. Farmland of statewide importance. The
assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest
permeability within 60 inches is very slow. Available water capacity is very high and shrink swell
potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high
water table is at 33 inches. It is in nonirrigated land capability class 2w. This component is not
a hydric soil.

Ke--Keyport Silt Loam
Keyport component makes up 85 percent of the map unit. Farmland of statewide importance. The
assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest
permeability within 60 inches is very slow. Available water capacity is very high and shrink swell
potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high
water table is at 33 inches. It is in nonirrigated land capability class 2w. This component is not
a hydric soil.

Kl--Klej Loamy Sand
Klej component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned
Kw erodibility factor is .17. This soil is moderately well drained. The slowest permeability within
60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is
not flooded and is not ponded. The top of the seasonal high water table is at 18 inches. It is in
nonirrigated land capability class 8s. This component is not a hydric soil.

Md--Made Land
Made Land component makes up 65 percent of the map unit. The assigned Kw erodibility factor is
Available water capacity is very low and shrink swell potential is low. This soil is not flooded and
is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class
8s. This component is not a hydric soil.

MeA--Matapake Silt Loam, 0 To 2 Percent Slopes
Matapake component makes up 75 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches
is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil
is not flooded and is not ponded. The water table is deeper than 6 feet. It is in
nonirrigated land capability class 1. This component is not a hydric soil.

MeB--Matapake Silt Loam, 2 To 5 Percent Slopes
Matapake component makes up 80 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches
is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil
is not flooded and is not ponded. The water table is deeper than 6 feet. It is in
nonirrigated land capability class 2e. This component is not a hydric soil.

MeC2--Matapake Silt Loam, 5 To 10 Percent Slopes, Moderately Eroded
Matapake component makes up 82 percent of the map unit. Farmland of statewide importance. The
assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within
60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in
nonirrigated land capability class 3e. This component is not a hydric soil.

Mt--Mattapex Silt Loam
Mattapex component makes up 80 percent of the map unit. All areas are prime farmland. The assigned
Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within
60 inches is moderately slow. Available water capacity is very high and shrink swell potential is
low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27
inches. It is in nonirrigated land capability class 2w. This component is not a hydric soil.
Mixed Alluvial Land
Mixed Alluvial Land component makes up 80 percent of the map unit. The assigned Kw erodibility factor is .15. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. It is in nonirrigated land capability class 8w. This component is a hydric soil.

Othello Silt Loam
Othello component makes up 90 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .37. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. It is in nonirrigated land capability class 3w. This component is a hydric soil.

Plummer Loamy Sand
Plummer component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .10. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. It is in nonirrigated land capability class 4w. This component is a hydric soil.

Pocomoke Sandy Loam
Pocomoke component makes up 85 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 0 inches. It is in nonirrigated land capability class 4w. This component is a hydric soil.

Rumford Loamy Sand, 0 To 2 Percent Slopes
Rumford component makes up 85 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2s. This component is not a hydric soil.

Rumford Loamy Sand, 2 To 5 Percent Slopes
Rumford component makes up 85 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2s. This component is not a hydric soil.

Rumford Loamy Sand, 5 To 10 Percent Slopes, Moderately Eroded
Rumford component makes up 85 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Rumford Loamy Sand, 5 To 10 Percent Slopes, Severely Eroded
Rumford component makes up 80 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

Rumford Loamy Sand, 10 To 15 Percent Slopes
Rumford component makes up 80 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil.
SaA−−Sassafras Sandy Loam, 0 To 2 Percent Slopes
Sassafras component makes up 85 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 1. This component is not a hydric soil.

SaB−−Sassafras Sandy Loam, 2 To 5 Percent Slopes
Sassafras component makes up 85 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

SaC2−−Sassafras Sandy Loam, 5 To 10 Percent Slopes, Moderately Eroded
Sassafras component makes up 85 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

SaC3−−Sassafras Sandy Loam, 5 To 10 Percent Slopes, Severely Eroded
Sassafras component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

SaD2−−Sassafras Sandy Loam, 10 To 15 Percent Slopes, Moderately Eroded
Sassafras component makes up 75 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil.

SfA−−Sassafras Loam, 0 To 2 Percent Slopes
Sassafras component makes up 85 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 1. This component is not a hydric soil.

SfB−−Sassafras Loam, 2 To 5 Percent Slopes
Sassafras component makes up 85 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil.

SfC2−−Sassafras Loam, 5 To 10 Percent Slopes, Moderately Eroded
Sassafras component makes up 80 percent of the map unit. Farmland of statewide importance. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil.

SvE−−Sassafras And Evesboro Soils, 15 To 40 Percent Slopes
Sassafras component makes up 45 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7e. This component is not a hydric soil.

SfC2−−Sassafras Loam, 5 To 10 Percent Slopes, Moderately Eroded
Evesboro component makes up 40 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7s. This component is not a hydric soil.
Sw−−Swamp
Swamp component makes up 85 percent of the map unit. The assigned Kw erodibility factor is .02. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil.

Tm−−Tidal Marsh
Tidal Marsh component makes up 75 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is very poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is moderate and shrink swell potential is moderate. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. The soil has a moderately saline horizon. It is in nonirrigated land capability class 8w. This component is a hydric soil.

Wo−−Woodstown Sandy Loam
Woodstown component makes up 80 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. It is in nonirrigated land capability class 2w. This component is not a hydric soil.

Ws−−Woodstown Loam
Woodstown component makes up 75 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. It is in nonirrigated land capability class 2w. This component is not a hydric soil.