We said the approach to establishing probabilities for events is to
- Define the experiment
- List the sample points
- Assign probabilities to the sample points
- Determine the collection of sample points contained in the event of interest
- Sum the sample point probabilities to get the event probability

Ohio’s Learning, Earning and Parenting program (LEAP) is designed to encourage school attendance among pregnant and parenting teens on welfare.
- Eligible teens who provide evidence of school enrollment receive a bonus payment; those that don’t attend school have money deducted from their grant
- A survey was conducted of LEAP teens and the bonus/sanction requests were recorded for each teen

LEAP Example
- (N) No bonus or sanction 7%
- (OB) Only Bonus 37%
- (OS) Only sanctions 18%
- (BB) Both, but more bonuses 14%
- (BS) Both, but more sanctions 18%
- (BE) Both, equal 6%
 100%

Venn Diagram of LEAP

S is the Event involving Sanctions
B is the event involving Bonus
What is the probability that both bonuses and sanctions are requested for a LEAP teen?

This can be thought of as event C (for both)

Or the intersection between A and B

And we sum the probabilities for

\[P(BB) + P(BS) + P(BE) = \]

\[.14 + .18 + .06 = .38 \]

What is the probability of Sanctions or Bonuses?

An alternative way to say this is the compliment, or

1 - the probability of neither

Neither is N, or No bonus or sanction

\[P(N) = .07 \]

\[1 - .07 = .93 \]

A traditional way to view this is:

\[P(S) + P(B) - P(S \cap B) \]

\[P(S) = OS + BB + BS + BE \]

\[= .18 + .14 + .18 + .06 = .56 \]

\[P(B) = OB + BB + BS + BE \]

\[= .37 + .14 + .18 + .06 = .75 \]

\[P(S \cap B) = BB + BS + BE \]

\[= .14 + .18 + .06 = .38 \]

\[= .56 + .75 - .38 = .93 \]

The complement of an event \(A \) is the event that \(A \) does not occur - that is all sample points not in Event \(A \)

Denoted as \(A^c \)

\[\text{The } P(A) + P(A^c) = 1.0 \]
Compound Events

Events can be comprised of several events joined together, and these are called **COMPOUND EVENTS**. They can be the UNION of several events or the INTERSECTION of several events.

Union of two Events p. 111

- The union of two events, A and B is the Event that occurs if either A, B, or both occur on a single performance of the experiment.
- We denote the union as $A \cup B$.
- $A \cup B$ consists of all the sample points that belong to A or B or both.

Intersection of two Events p. 111

- The intersection of two events, A and B is the Event that occurs if both A and B occur on a single performance of the experiment.
- We denote the intersection as $A \cap B$.
- $A \cap B$ consists of all the sample points that belong to both A and B.

Example using a die toss

- Event A [Toss an even number]
- Event B [Toss a number <= 3]
- What is $A \cap B$?
- What is $A \cup B$?
- Can you calculate the probability of the union and the intersection of these events?

What is $A \cap B$ for a roll of a die?

- $A = \{2, 4, 6\}$
- $B = \{1, 2, 3\}$
- $A \cap B = \{2\}$

What is $A \cup B$ for a roll of a die?

- $A \cup B$ consists of all the sample points that belong to either A or B.
What is $P(A \cap B)$ for a roll of a die?

![Venn Diagram]

The probability of this event is

$$P(A \cap B) = P(1) + P(2) + P(3) + P(4) + P(6)$$

Another way to approach the problem of $A \cap B$

- Find the probability of the compliment, and subtract from 1
 - $1 - P(A \cap B)$
- This would mean everything that wasn’t in events A or B
 - In this case it is the value of 5
 - And the probability of rolling a five is $1/6$
 - $1 - 1/6 = 5/6$

What is $A \cup B$ for a roll of a die?

- $A = \{2, 4, 6\}$
- $B = \{1, 2, 3\}$
- $A \cup B =$

The probability of this event is

$$P(A \cup B) = P(2)$$

Additive Rule of Probability

- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
- This is called the Additive Rule of Probability
- And if events A and B are mutually exclusive, meaning no intersection, then
 - $P(A \cup B) = P(A) + P(B)$

Roulette example, p 120

- Roulette is a betting game where a ball spins on a circular wheel that is divided into 38 arcs of equal length
- **Red Numbers**
 - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
- **Black numbers**
 - 2 4 6 8 10 11 13 15 17 20 22 24 26 28 30 31 32 33 34 35
- **Green numbers**
 - 00 0
- You can bet on odd, even, red, black, high, low
Roulette example
- A: Outcome is an odd number (note 00 and 0 are neither even or odd)
 - A: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]
 - P(A) = 18/38 = .474

Roulette example
- B: Outcome is a black number
 - B: [2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35]
 - P(B) = 18/38 = .474
- C: Outcome is a low number (1-18)
 - C: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
 - P(C) = 18/38 = .474

Find the Intersection of Events A and B
- Find all numbers that are both odd and black
- A: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]
- B: [2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35]
 - A \cap B = \quad P(A \cap B) =

Find the Intersection of Events A and C
- Find all numbers that are both odd and low
- A: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]
- C: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
 - A \cap C = \quad P(A \cap C) =

Find the Intersection of Events B and C
- Find all numbers that are both black and low
- B: [2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35]
- C: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
 - B \cap C = \quad P(B \cap C) =

What about the Intersection between all three Events
- Find all odd numbers that are Black and are low
- A B C = \quad P(A \cap B \cap C) = 4/38 = .105
What about the union between two events? A \cap B
This is all the numbers that are odd or are black.
Note: there is overlap between them, and they are not mutually exclusive.

All odd numbers and all that are Black:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 2, 4, 6, 8, 10, 20, 22, 24, 26, 28.
The green numbers (also in bold) represent the overlap.
P(A \cap B) =

Use the additive rule:
P(A \cap B) = P(A) + P(B) - P(A \cap B)
P(A \cap B) = .474 + .474 - .211
P(A \cap B) = .737

All points that are either odd, Black, or low:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 2, 4, 6, 8, 10, 20, 22, 24, 26, 28, 12, 14, 16, 18.
32/38 = .842

So what’s the point??
Not to make you better gamblers.
I do want you to understand:
that probability is based on events within a sample space.
that defining the probability of an event(s) can be complicated, particularly for compound events.
That we will use probability theory when to make inferences.
Conditional Probability
- If we have knowledge that affects the outcome of an experiment, the probabilities will be altered
- We call this a **Conditional Probability**
- The probability of an event is conditioned on another event
- We often use the term “given” when talking about conditional probabilities

Designated as \(P(A|B) \)

Suppose we have the roll of a die
- \(P(\text{even number}) = P\{2, 4, 6\} = \frac{3}{6} = .5 \)

What if we ask the probability of an even number given the die is less than or equal to 3?
- \(P(\text{even} | \#3) = P\{2 | \#3\} = \frac{1}{3} \)

Note: it is a 2 out the new or given possible space \{1,2,3\}

The formula of a conditional probability is:
- Probability of the intersection of A and B
- Divided by the probability of B
- It adjusts the probability of the intersection to the reduced sample space of the condition

\[
P(A | B) = \frac{P(A \cap B)}{P(B)}
\]

Back to the die example
- If \(A = \{\text{even number on a die}\} \)
- \(B = \{\text{less than or equal to 3}\} \)
- \(P(A \cap B) = P(2) = \frac{1}{6} = .1667 \)
- \(P(B) = P(1) + P(2) + P(3) = \frac{3}{6} = .5 \)
- \(P(A|B) = .1667/ .5 = .333 \)
- or \(1/3 \)

Multiplicative Rule
- The multiplicative rule shows us the probability of an intersection
- Remember we said a conditional probability is determined by the formula

\[
P(\text{intersection}) = \frac{P(A \cap B)}{P(B)}
\]

This shows the probability of an intersection
- It suggests that the probability of an intersection between two events depends upon the conditional probability between the two events

\[
P(A \cap B) = P(B)P(A | B)
\]
Probability of an Intersection

\[P(A \cap B) = P(B)P(A \mid B) \]

\[P(B \cap A) = P(A)P(B \mid A) \]

Multiplicative Rule and Independence

- If Events A and B are independent of each other
 - Then, \(P(A \mid B) = P(A) \)
 - Independence means that the probability of A doesn’t change given the event B
 - And likewise, \(P(B \mid A) = P(B) \)

Multiplicative Rule and Independence

- In the case of independence between events A and B
 - The formula for probability of an interaction reduces to:
 \[P(A \cap B) = P(A)P(B) \]
 - If we can assume independence between events, figuring the probability of the intersection of events is much easier

Look at the Probability of tossing two coins

What is the probability of getting two heads?

First Toss
- .5
 - H
 - T

Second Toss
- .5
 - H
 - T

- H H = .25
- H T = .25
- T H = .25
- T T = .25

Earlier we looked at this problem differently

- Sample space for flipping two coins and noting the face:
 - Observe H H \(\frac{1}{4} = .25 \)
 - Observe H T \(\frac{1}{4} = .25 \)
 - Observe T H \(\frac{1}{4} = .25 \)
 - Observe T T \(\frac{1}{4} = .25 \)

Use Multiplicative Rule and Independence

- The probability of observing a head in a single flip of a coin is \(\frac{1}{2} \) or .5
- The probability of observing a tail in a single flip of a coin is \(\frac{1}{2} \) or .5
- If I can assume independence
 - \(P(\text{two Heads}) = \)
 - \(= P(\text{Head 1st flip}) @ P(\text{Head on the 2nd flip}) \)
 - \(= (.5) @ (.5) = .25 \)
Multiple through to get the probabilities

What is the probability of getting two heads?

```
First Toss
.5
H
.5
H
1
TT
HH
TT
HHH
HT
THT
TTH
TTT
HH
First
Toss
Second Toss
.5
H
.5
T
.5
H
.5
T
.5
T
.5
T
HHHH
HTHT
THTH
TTTT
```

Conditional Probability

Conditional probability and independence are very important concepts in research.
- If we hypothesize salary levels differ between men and women, in essence we are saying, "given you are a female, I expect your salary is lower."
- If we hypothesize that level of response is different between a drug and the treatment group, we are saying, "given you received the drug your response is higher."
- Relationships that show independence demonstrate there is no effect or change.

A little circular?

Probability of A Union

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

Conditional Probability

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]

Probability of an Intersection

\[P(A \cap B) = P(B)P(A \mid B) \]

Example

- Deck of Cards
- Four suits, Hearts, Diamonds, Clubs, Spades
- 13 in each suit
- Let Event A = Face Cards (Jack, Queen, King)
- Let Event B = Hearts
- Let Event C = Red suit (Hearts, Diamonds)

Define Experiment: selecting from a single Deck of cards

List the sample points

- Event A = [J ♥ Q ♥ K ♥; J ♦ Q ♦ K ♦; J ♣ Q ♣ K ♣]
- Event B = [A ♥ 2 ♥ 3 ♥ 4 ♥ 5 ♥ 6 ♥ 7 ♥ 8 ♥ 9 ♥ 10 ♥ J ♥ Q ♥ K ♥]
- Event C = [A ♥ 2 ♥ 3 ♥ 4 ♥ 5 ♥ 6 ♥ 7 ♥ 8 ♥ 9 ♥ 10 ♥ J ♥ Q ♥ K ♥; A ♦ 2 ♥ 3 ♥ 4 ♥ 5 ♥ 6 ♥ 7 ♥ 8 ♥ 9 ♥ 10 ♥ J ♥ Q ♥ K ♥]

Assign Probabilities

- A random draw of each card is 1/52
- \(P(\text{Event A}) = \frac{9}{52} = .1731 \)
- \(P(\text{Event B}) = \frac{13}{52} = .25 \)
- \(P(\text{Event C}) = \frac{26}{52} = .5 \)
What is the Probability of:
- $P(A \cap B)$
- $P(B \cap C)$

What is the Probability of:
- $P(A \cup B)$
- $P(B \cup C)$

What is the Probability of:
- $P(A|B)$