are scriptlets bad?

314

This is SUCH a nice
chapter with a VERY lovely look

at how to put Java code in a TSP,
but, um, look at this company-
wide memo T just got.

chapter 7

Interoffice Memo from the CTO

URGENT

Effective immediately, anyone caught

using scriptlets, expressions, or
declarations in their JSP code will k=
suspended witheut pay until such time
as it can be determined whether the
‘programmer was fully responsible or
simply trying to malntaln some. OTHER
idiot’s code.

‘If, in fact, .the. determimation is

made -that the programmer is, in facsz,
responsible, the company will go ahezc
and, in fact, terminate the employes.

Rick Forester
Chief Technology Officer

Y“Remember: there is no - “I” in TEAM.”

“Write your code as if the next guy~
to maintain it is a homicidal maniz:
who knows where you live.”

[*Note to HR: we' use “guy” in its non-
gender specific form.]

Scriptlets considered harmful?

Is 1t nuer Could there be a downside 1o putting all this Java into your JSP? After
all,isn’t that the whole frickin® POINT to a JSP? So that you write your Java in
what 1s essentially an HI'ML page as opposed to writing HTML in a Java class?

Some people believe (OK, technically a /ot of people including the JSP and
Servlet spec teams) that it’s bad practice to put all this Java into your JSP.

Why? Imagine you’ve been hired to build a big web site. Your team includes
a small handful of back-end Java programmers, and a huge group of “web
designers”—graphic artists and page creators who use Dreamweaver and
’hotoshop to build fabulous-looking web pages. These are not programmers
{well, except for the ones who still think HTML is “coding”).

Dude... do I LOOK like
someone who would write
code? I'm a high-paid Web
Designer. DESIGNER. I'm an
ARTIST, not a coder.

Do YOU
know Java?

Aspiring actors working as web designers
while waiting for their big showbiz break.

you are here »

3156

Two questions—WHY are

(Note to parents and teachers: the four-let-
ter word implied in this thought bubble, that
starts with ‘", followed by three asterisks,
is NOT what you think. It was just a word
that we found too funny to include without
distracting the reader, so we bleeped it out.
Because it's funny. Not bad.)

316

you making us learn it, and WHAT is
the alternative? What the f*** else
IS there besides HTML if you can't
put scriptlets, declarations, and
expressions in your JSP?

There didnt used to BE an alternative.

That means there are already mountains of JSP files brimming with
Java code stuck in every conceivable spot in the page, nestled
between scriptlet, expression, and declaration tags. It’s out there
and there isn’t anything anyone can do to change the past. So
that means you've got to know how to read and understand these
elements, and how to maintain pages written with them (unless
you're given the chance to massively refactor the app’s JSPs).

Secretly, we think there’s still a place for some of this-nothing
beats a little Java in a JSP for quickly testing something out on you
server. But for the most part, you don’t want to use this for real,
production pages.

The reason this is all on the exam is because the alternatives are

still fairly new, so most of the pages out there today are still “old-
school”. For the time being, you still have to be able to work with it! At
some point, when the new Java-free techniques hit critical mass, the
objectives from this chapter will probably drop off the exam, and
we’ll all breathe a collective sigh at the death of Java-in-JSPs.

But today is not that day.

RN

Oh if only there were a way
ina JSP to use simple tags

that cause Java methods to run,
without having to put actual Java
code into the page.

Or almost everything. But certainly an answer to two big
complaints about putting actual Java into a JSP:

1) Web page designers shouldn’t have to know Java.
2) Java code in a JSP is hard to change and maintain.

EL stands for “Expression Language”, and it became officially
part of the spec beginning with JSP 2.0 spec. EL is nearly
always a much simpler way to do some of the things you’d
normally do with scriptlets and expressions.

Of course right now vou’re thinking, “But if I want my JSP
to use custom methods, how can I declare and write those
methods if I can’t use Javar”

Ahhhh... writing the actual functionality (method code) is not
the purpose of EL. The purpose of EL is to offer a simpler way
to invoke Java code—but the code itself belongs somewhere else.
That means in a regular old Java class that’s either a JavaBean,
a class with static methods, or something called a Tag Handler.
In other words, you don’t write method code into your JSP
when you’re following todav’s Best Practices. You write the Java
method somewhere else. and call it using EL.

w317

_—

% JSP Element Magnel,s

0

Match the JSP element with its label by placing the JSP snippet in
the box with the label representing that element type. Remember,
you'lt have Drag and Drop questions on the real exam similar to
this exercise, so don't skip it!

JSP element type JSP snippet
3
FAY
ynese ¢ Xne
g ey
LY \aoet

declaration

<% Float one = new Float(42.5); %>

%>

<%l int y = 3/

EL expression

<%@ page import="java.util.*” %>

7"£00 .html” />

<jsp:include file=

pageContext.getAttribute(“foo”)

$>

email; ${applicationScope.mail}

expression

yvou are here » 323

JSP elements cxercise

=21\ JOP Element Maghnets: the Sequel

You know what they're called, but do you remember where they go in the
generated servlet? Of course you do. But this is just a little reinforcement/practice
before we move on to a different chapter and topic.

{Put the element in the box corresponding to where that element’s generated code
will go in the servlet class file. Note that the magnet itself does not represent the
ACTUAL code that will be generated.

public final class BasicCounter_jsp extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent. |

public void _jspService (HttpServletRequest request, HttpServletResponse response)
throws java.io.IOException, ServletException

The order of these three
magnc{'.s does no{ wmatter

a

<4t page

" oy
Lmpoyt java.ubt 1.

Head First Servlets & JSP™
by Bryan Basham, Kathy Sierra, and Bert Bates

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95172

O’Reilly Media books may be purchased for educational, business, or sales promotional usc.
Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Cover Designer: Edie Freedman

Interior Decorators: Kathy Sierra and Bert Bates
Anthropomorphizer: Kathy Sierra

Servlet Wrangler: Bryan Basham

Assistant to the
Front Controller: Bert Bates

Printing History:
August 2004: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

In other words, if you use anything in Head First Servlets & J[SP™ to, say, run a nuclear power
plant or air traffic control system, you're on your own.

The authors hope you remember them, should you create a huge, successful dot com as a result
of reading this book. We’ll take stock options, beer, or dark chocolate.

ISBN: 0-596-00540-7

(M]

