
Quick and Dirty XML Intro
P. Conrad for CISC474

4/19/2005
Not intended to be a complete introduction;

This is just to "get you started".

Sources:
• [1] Schaum's Easy Outlines: XML, Ed Tittel, McGraw-Hill, 2004.

($8.95 at Liebemann's).
• [2] http://www.w3.org/TR/xmlschema-1
• [3] http://www.w3.org/TR/xmlschema-2
• [4] For the data itself: Google searches on "NASCAR Driver Numbers"

http://www.nascar.com/drivers/list/cup/dps/ and
"New York Times Bestsellers"
http://www.nytimes.com/2005/04/24/books/bestseller/0424besthardnonfiction.html

• [5] http://www.w3schools.com/xlink/xlink_intro.asp For info on XPointer and XLink.

XML provides a way
to structure data

<driver>
<name>Jeff Gordon</name>
<number>24</number>
<make>Chevrolet</make>
<sponsor>DuPont</sponsor>

</driver>

<driver>
<name>Dale Earnhardt, Jr.</name>
<number>8</number>
<make>Chevrolet</make>
<sponsor>Budweiser</sponsor>

</driver>

NASCAR data Book Data

<book>
<title>The World Is Flat<title>
<author>Thomas L. Friedman</author>
<publisher>Farrar, Straus & Giroux</publisher>

</book>

<book>
<title>Blink</title>
<author>Malcolm Gladwell</author>
<publisher>Little, Brown</publisher>

</book>

The structure is application-specific;
you develop it yourself

<driver>
<name>Jeff Gordon</name>
<number>24</number>
<make>Chevrolet</make>
<sponsor>DuPont</sponsor>

</driver>

<driver>
<name>Dale Earnhardt, Jr.</name>
<number>8</number>
<make>Chevrolet</make>
<sponsor>Budweiser</sponsor>

</driver>

If you are programming a system for
NASCAR drivers, you decide what
the elements should be through your
knowledge of NASCAR:

<name>Jeff Gordon</name>

A <name> element:

A <make> element:

<make>Chevrolet</make>

Elements and attributes

Attributes:
name,value pairs inside the open tag
rookie, position and positionLastWeek are attributes

<driver rookie="true">
<name>Kyle Busch</name>
<number>5</number>
<make>Chevrolet</make>
<sponsor>Kellogg's/Delphi</sponsor>

</driver>

<book position="3" positionLastWeek="1">
<title>Blink</title>
<author>Malcolm Gladwell</author>
<publisher>Little, Brown</publisher>

</book>

<book>
<title>My Life So Far</title>
<author>Jane Fonda</author>
<publisher>Random House</publisher>

</book>

Elements:
The book element include the opening <book> tag,
the closing </book> tag, and everything in between

The author element is nested inside the book element

You specify the proper nesting of
elements in one of two ways:

<driver>
<name>Jeff Gordon</name>
<number>24</number>
<make>Chevrolet</make>
<sponsor>DuPont</sponsor>

</driver>

<!ELEMENT driver (name, number, make, sponsor) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT make (#PCDATA)>
<!ELEMENT sponsor (#PCDATA)>

<schema xmlns="http://www.w3.org/2001/XMLSchema”
xmlns:nascar="http://copland.udel.edu/~pconrad/xmlns/nascar"
targetNamespace="http://copland.udel.edu/~pconrad/xmlns/nascar"

<element name="driver">
<complexType>

<sequence>
<element ref="nascar:name"/>
<element ref="nascar:number"/>
<element ref="nascar:make"/>

<element ref="nascar:sponsor"/>
</sequence>

</complexType>
</element>
<element name="name" type="string" />
<element name="number" type=" nonNegativeInteger" />
<element name="make" type="string" />
<element name="sponsor" type="string" />
</schema>

DTD (Document Type Definition)

• The old school way
• Syntax: cryptic, compact, limited

• A newer way
• Syntax: XML (familiar), verbose, powerful

XML Schema

Validation of XML documents
• "Without a DTD or a schema, there is no way to validate a document.

Validation means conformity to a schema or DTD". [1, p. 26].

ID
IDREF
CDATA
NOTATION
ENTITY
ENTITITES

DTD Types:
Schema Types

(for both elements and attributes)

3.2 Primitive datatypes
3.2.1 string
3.2.2 boolean
3.2.3 decimal
3.2.4 float
3.2.5 double
3.2.6 duration
3.2.7 dateTime
3.2.8 time
3.2.9 date
3.2.10 gYearMonth
3.2.11 gYear
3.2.12 gMonthDay
3.2.13 gDay
3.2.14 gMonth
3.2.15 hexBinary
3.2.16 base64Binary
3.2.17 anyURI
3.2.18 QName
3.2.19 NOTATION

3.3 Derived datatypes
3.3.1 normalizedString
3.3.2 token
3.3.3 language
3.3.4 NMTOKEN
3.3.5 NMTOKENS
3.3.6 Name
3.3.7 NCName
3.3.8 ID
3.3.9 IDREF
3.3.10 IDREFS
3.3.11 ENTITY
3.3.12 ENTITIES
3.3.13 integer
3.3.14 nonPositiveInteger
3.3.15 negativeInteger
3.3.16 long
3.3.17 int
3.3.18 short
3.3.19 byte
3.3.20 nonNegativeInteger
3.3.21 unsignedLong
3.3.22 unsignedInt
3.3.23 unsignedShort
3.3.24 unsignedByte
3.3.25 positiveInteger

for elements: for attributes:

#PCDATA
(parsed character data)

XML Schema Types from http://www.w3.org/TR/xmlschema-2

ur-types: base of the type hierarchy

What is "ur-type"?
An abbreviation for "un-restricted"?
I don't know, but my guess is it comes
from the German word "ur-text", meaning
the "original" text of a document....

built-in primitive types

built-in derived types

Things you can do with an XML document
• Validate it against a DTD or Schema
• Format it for a browser using a Cascading Style Sheet (CSS)
• Parse it from Java (C++,Python,Perl, etc...) with the DOM or SAX APIs

– DOM parses whole document into a tree, then lets you access it
– SAX is event-based; it provides callbacks for a depth-first traversal

• Transform it into another format (e.g. HTML) using XSL/XSLT
– often HTML is the target format, but could be LaTeX, MySQL

commands, CSV, etc.
• Search it using XPath expressions

– XPath is sort of a "query language" for XML
– can be used to specify subset of elements that match some criteria

• Make links to subsets of content in the document using
XPointer
– XPointer provides a way of making a hyperlink to the subset of an XML

document specified by an XPath expression.
• Use XLink to make hyperlinks with XLink

– more sophisticated than can be made with regular HTML.

Preliminary notes on CSS

• "XML is content driven, not presentation driven." [1,p. 66]
• Cascading Style Sheets (CSS) provide rules for formatting style
• CSS version:

– current version: http://www.w3c.org/TR/CSS2
– CSS3 is being worked on; drafts available at www.w3c.org

<driver>
<name>Jeff Gordon</name>
<number>24</number>
<make>Chevrolet</make>
<sponsor>DuPont</sponsor>

</driver>

CSS

Formatting XML with
a CSS (part 1)
(taken directly from

http://www.w3c.org/TR/CSS2)

XML fragment, with Processing Instruction (PI) added at top:
<?xml:stylesheet type="text/css" href="bach.css"?>
<ARTICLE>

<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA> One evening, just as he was getting his

<INSTRUMENT>flute</INSTRUMENT> ready and his musicians were
assembled, an officer brought him a list of the strangers who had arrived.

</PARA>
</ARTICLE>

To display like a document, for each element, declare it as either:
• inline-level (i.e., does not cause line breaks)
• block-level (i.e., causes line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

Put both files in same directory, view with a XML/CSS aware browser

bach.css

article1.xml

Warning:
possible typo?
See later slide

Formatting XML with
a CSS (part 2)
(taken directly from

http://www.w3c.org/TR/CSS2)

Same XML fragment, but specify a different CSS:
<?xml:stylesheet type="text/css" href="bach2.css"?>
<ARTICLE>

<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA> One evening, just as he was getting his

<INSTRUMENT>flute</INSTRUMENT> ready and his musicians were
assembled, an officer brought him a list of the strangers who had arrived.

</PARA>
</ARTICLE>

• headline font size larger than then rest of the text
• display the author's name in italic:

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }
AUTHOR { font-style: italic }
ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

bach2.css

article1.xml

Warning:
possible typo?
See next slide

An annoying mystery...
• An annoying mystery:

– www.w3c.org is the official place to go for Web Standards
– I copied this XML Processing instruction directly from their own tutorial:

<?xml:stylesheet type="text/css" href="bach.css"?>
– It works fine in IE, but refuses to work in Firefox.

• What's up with that, I think? Is Firefox broken? Could IE be "better"?
Say it isn't so!!!

• Further investigation reveals:
– Firefox claims to adhere "strictly" to w3c.org standards. Their story:

• If something works in IE or other browsers, but not in Firefox,
then the other browser is permissive, while Firefox is strictly interpreting the standard.

– I looked at other examples on the web, and found the following syntax in many:
Note hyphen instead of colon:
<?xml-stylesheet type="text/css" ...

– Firefox uses the MIME type set by the server rather than the file extension to determine
how to present content (which is more in keeping with the standard.)

• The Web server is the one that sets the MIME type in the HTTP response
• If you can't configure the server directly, an.htaccess file might help (see next slide).

Typo?
or alternative

syntax?

Note the use of Unix command
to show hidden files:

ls -al

Example .htaccess file for setting MIME types
> ls -al
total 120
drwxr-xr-x 2 pconrad 0376 4096 Apr 19 12:02 .
drwxr-xr-x 3 pconrad 0376 4096 Apr 17 13:34 ..
-rw-r--r-- 1 pconrad 0376 1513 Apr 18 20:06 .foo
-rw-r--r-- 1 pconrad 0376 1487 Apr 18 19:58 .htaccess
...
> more .htaccess
CSS
AddType text/css .css

XHTML
AddType application/xhtml+xml .xhtml

XML
AddType text/xml .xml

SVG
AddType image/svg+xml .svg .svgz
AddEncoding x-gzip .svgz

HTML
Server Side Includes (SSI)
AddType text/html .shtml

Active Server Pages
AddType text/html .asp
...

Compare:

Firefox: "Tools/Page Info"

IE: " File/Properties"

On strauss, without a .htaccess file,
IE worked, but Firefox did not.

Firefox claims to be more "correct" in this behavior,
i.e. working from MIME type in HTTP response header,
not the file extension.

Let's try it with our Drivers file

• A few practical things I ran into:
– I put both files in the same directory on my web site.
– I had to put a top-level element called "<drivers></drivers>"

around my list of "<driver>...</driver><driver>...</driver>".
The browsers didn't like it if there was more than one
top-level element in the document.

– On strauss, I had to include a .htaccess file to set the
MIME types to get Firefox to work.

driver, name, number, sponsor, make { display: block; }
driver { margin: 0.5em; }
name { font-weight: bold; color: red; }
make { font-style: italic; }
sponsor { color: green; }

<?xml-stylesheet type="text/css" href="drivers.css"?>
<drivers>
<driver>

<name>Jeff Gordon</name>
<number>24</number>
<make>Chevrolet</make>
<sponsor>DuPont</sponsor>

</driver>

<driver>
<name>Dale Earnhardt, Jr.</name>
<number>8</number>
<make>Chevrolet</make>
<sponsor>Budweiser</sponsor>

</driver>
</drivers>

drivers.cssdrivers.xml

Homework assignment H04
• Using the same product you used for your H02 and H03,

and following the example of the NASCAR drivers file in
these slides, create an XML file called prod.xml.
– Your prod.xml file should embed at least four elements inside

each element (e.g. four elements for each NASCAR driver).
• Create a prod.css file so that your product is formatted in

some interesting way. Use fonts, colors, and margins.
• Create a directory on strauss called

~userid/public_html/cisc474/H04 and place your
prod.xml and prod.css file in this directory. Include also
an .htaccess file so that this file can seen with formatting
from both IE and Firefox.

