
CISC280 Spring 2009 Lab 8

The Scheme function read takes no arguments, and takes user input from the key-
board. There is a note on it on page 383 of your text. Play with it in the interpreter
until you are comfortable predicting its behavior with a variety of inputs.

Then try using it inside simple procedures for user interaction. For example,
explain (in writing) the behavior of this procedure:

(define (bad-way-to-read)
(cond ((eq? 1 (read)) ’tuna)

((eq? 2 (read)) ’spam)
(else ’croquet)))

Once you are comfortable with read, consider a user interface that allows the
user to control the order of icons on a toolbar. Each icon is associated with a
function that gets called when the icon is clicked. Our job is to re-order the icons.
Write the function change-proc-menu-order so that it behaves as follows:

(define assoc-list (map cons ’(square fib fact) (list square fib fact)))
> assoc-list
((square . #<procedure:square>) (fib . #<procedure:fib>) (fact . #<procedure:fact>))
> (change-proc-menu-order assoc-list)
Current order: (square fib fact)
Type a new list order to rearrange menu: (fib fact square)
Type 1 to change order, 2 to return list: 1
Current order: (fib fact square)
Type a new list order to rearrange menu: (fact fib square)
Type 1 to change order, 2 to return list: 2
((fact . #<procedure:fact>) (fib . #<procedure:fib>) (square . #<procedure:square>))
>

Be sure you understand the code example above thoroughly.
If you need to submit (see syllabus if you are unsure) submit your code file(s)

and a script of several well-chosen test cases via MyCourses (due Thursday mid-
night) and on paper (to your TA’s mailbox Friday by 1 p.m.) to receive full credit.

When you use MyCourses, remember that you can “upload” files multiple
times, but you only click “submit” once.

1


