
CISC280 partial Midterm 1, Fall 2004

NAME

General instructions:

There are like, some problems worth points, and an extra credit problem worth 5 points.
Read the problems very carefully. Identify what kind of answer the problem asks for. If
writing a procedure, carefully look at requirements for input and output, and any restrictions
on how it must be written or which other procedures may be used.

You may assume a list argument will be flat unless it is otherwise specified, and that the
elements will not produce errors for the procedures described.

Do not do unnecessary testing. For example, testing for both list? and null? instead of
using one test and then else would be considered unnecessary testing.

Do not make code unnecessarily inefficient. An extra procedure call here or there is ok,
but do not make an O(n) problem into O(n2).

Do problems you are confident about first. If you finish the problems you know, write
what you do know about other problems to gain partial credit; but erroneous information
may detract from that credit, so don’t make stuff up.

You may use any of the Scheme primitives we use in class.

1. 16 pts. Show what is returned by the interpreter in response to each of these expres-
sions. Each is to be evaluated by itself. If the result is an error, or other interpreter
message, you do not have to be exact. For example, if the expression were the input
“expt”, you could show the interpreter’s response as “primitive” instead of writing
#<primitive:expt>.

(a) (cons a b)

(b) (cons () (quote b))

(c) (cons () ())

(d) (cond (#t + 3 5 7))

(e) (cdr ())

(f) (quote +)

(g) (cons (list 1 2 3)())

(h) (cadr (cons 7 2))



2. 20 pts. Write the function interleave that merges two lists, alternating the members.
If one list is longer, its extra elements simply get added to the end. The first argument’s
element goes first.

> (interleave ()’(3))

(3)

> (interleave ’(3 5 7) ’(4 6 8))

(3 4 5 6 7 8)

3. 21 pts. As discussed in class, what three elements are shared by all programming
languages? List them here. Give examples of each in both Scheme and either C,
C++, or Java. Did you write nine things?

(a)

(b)

(c)

4. 14 pts. Write a tail-recursive procedure to compute factorial of an integer argument
n, where factorial(n) = n ∗ n− 1 ∗ ... ∗ 1

5. 5 pts. Draw the box and pointer structure for (((1 2) 3) 4 5).

6. 5 pts. Write the Scheme representation of the box and pointer structure shown.

7. 10 pts. Write accumulate.

8. 7 pts. Using only calls to sequence operators, define a procedure somof that takes an
integer n as argument and returns the sum of the first n positive multiples of 5, starting
with zero. You do not need to define the sequence ops you use. You may define small
lambdas to feed to your sequence ops.

> (somof 5)

75

9. 3 pts. Write a single call to accumulate that sorts a list. Write any supporting
procedures you need.

10. 5 pts Extra Credit: Paul Graham accomplished amazing things in two different indus-
tries. What were the industries? What did he do?


