
predicates

Conditionals

• #t #f

• primitives: < = > not and or

• (if <predicate> <consequent>
<alternative>)

• (cond (<pred1> <clauses>) (<pred2>
<clauses>)…)

• cons
• car
• cdr

• null?
• pair?
• list?

1

2

3

4

Procedures as black boxes

• user only sees what is necessary to
see

• “what does it do?” not “how”

• procedural abstraction

• procedural decomposition

• sqrt-iter

Block Structure

• nested definitions

– always come first! (otherwise, behavior
is not guaranteed)

• hide what doesn’t need to be seen

Bound variables

– procedure def binds formal parameters

– consistent renaming

Scope

• where a name is bound

– bound vars have procedure as their scope

• free variables

• lexical scoping: when a free var in a
procedure is interpreted in the context of
an enclosing procedure (used in Scheme,
not all Lisps)

• sqrt-block2.scm

5

6

7

8

Recursive Processes

• fact-rec

• state is”hidden” in chain of deferred
operations

• fact-rec is a linear recursive process
(# of frames on stack is O(n))

Iterative Processes

• state can be stored in fixed # vars,
so don’t need to grow stack

• no deferred operations

• fact-iter

Recursive Process or

Tail Recursion in Scheme
• iterative process with a recursive call

• Procedure is recursive, but process is
iterative

• procedure: what we write

• process: how machine implements

• Scheme performs in fact-iter in constant
space, i.e. O(1) space

• Efficient

9

10

11

12

