
Chomper, due Friday March 13

The purpose of this function is to mimic the actions of a simple cybernetic animal that lives in a one-
dimensional world of zeros and ones1. Ones represent things to eat, and the animal seeks them out and eats
them until none are left. An interaction with chomp will look like this:

> (chomper ’(0 1 0 V 1 1 1 1 0 0) )
(0 1 0 > 1 1 1 1 0 0)
(0 1 > 0 1 1 1 1 0 0)
(0 > 0 0 1 1 1 1 0 0)
(0 V 0 0 1 1 1 1 0 0)
(0 < 0 0 1 1 1 1 0 0)
(0 0 < 0 1 1 1 1 0 0)
(0 0 0 < 1 1 1 1 0 0)
(0 0 0 0 < 1 1 1 0 0)
(0 0 0 0 0 < 1 1 0 0)
(0 0 0 0 0 0 < 1 0 0)
(0 0 0 0 0 0 0 < 0 0)
(0 0 0 0 0 0 0 V 0 0)
"All Done!"
> (chomper ’(0 0 V 0 0) )
"All Done!"
>

Let’s notice a couple of things about the Chomper. First, Chomper itself is represented in one of three
ways, depending on its current state. If Chomper is not currently moving in a direction, it is represented
as a V. If it is moving left, it is represented as a >, and if it is moving right, a <. Thus the list given to
the chomper function consists of a series of zeros and ones and one instance of Chomper in one of its three
states.

Suppose Chomper is in its V state. Then, if there is any food to its left (i.e., there are any ones to its
left) then it will switch to a state in which it is moving left. If there is no food to its left (i.e., there are NO
ones to its left) but there is food to its right, it will switch to a state in which it is moving right. If there is
no food left for it to consume (when it is in its V state), it will print out a message.

Once Chomper is started in one direction or another, it will continue in that direction as long as there
is any food in that direction at all. When food runs out in that direction, Chomper will not move but will
switch into its V state. As long as there is food in a particular direction, Chomper will move one place in
that direction, converting ones into zeros as they are met. The state of Chomper is printed out with each
change to its state.

I used 45 lines, including white space, to write 7 functions for Chomper. I could easily have written 4 or
10 functions, but 7 fit the way I was thinking about it. First I enumerated the cases I could see, then wrote
black box names to handle each one. I sketched a high level function in Scheme, then commented it out
(why?). Then I wrote each low level function and tested them. As I wrote them I made a couple of changes
to the high level code (in particular I could now see that some of the cases were subsumed by others). When
the low level functions were all done, I uncommented the controlling function and tested it.

Note: do not use any Scheme functionality we haven’t covered so far.
Hints: 1) First try to solve this problem: for any location of a single 2 in a list, try to swap 2 with the

number to the left. Now solve the same problem, but swapping 2 with the element on the right. 2) Note
that Chomper eats ones, but that doesn’t affect the representation; we can think of Chomper moving and
leaving zeros in its path, without having to worry about what it is eating. 3) Use the member? function we
wrote in class, and a slight modification of that function.

1This problem adapted with permission from Kathy McCoy.

1


