CISC280 Midterm Learning Experience 1, Spring 2006

NAME

General instructions:

Turn off all noise-making electronic devices, such as cell phones. Disturbance by such a device during the exam may
result in a penalty not to exceed a full letter grade.

You may leave the classroom once the exam has begun, but you may not return.

There are 7 pages worth a total of points, and an extra credit problem worth 3 points. Read the problems very
carefully. Identify what kind of answer the problem asks for. If writing a procedure, carefully look at requirements for
input and output, and any restrictions on how it must be written or which other procedures may be used.

You may assume a list argument will be flat unless it is otherwise specified, and that the elements will not produce
errors for the procedures described.

Do not do unnecessary testing. For example, testing for both list? and null? instead of using one test and then else
would be considered unnecessary testing.

Do not make code unnecessarily inefficient. An extra procedure call here or there is ok, but do not éké an
problem intoO(n?).

Do problems you are confident about first. If you finish the problems you know, write what you do know about
other problems to gain partial credit; but erroneous information may detract from that credit, so don’t make stuff up.

You may use any of the Scheme primitives we use in class.



1. (26 pts) Show what is returned by the interpreter in response to each of these expressions. Each is to be evaluated
by itself. If the result is an error, or other interpreter message, you do not have to be exact. For example, if the
expression were the input “expt”, you could show the interpreter’s response as “primitive” instead of writing
#<primitive:expt>. If you write more than one thing after a questi@iRCLE the one you want graded.

(@) (cons 3 4)
(b) (cons 8 ()
(c) (list 8 ()

(d) (append () ()

() (cons (list 1 2)(list 3 4))
(f) (list (list 1 2)(list 3 4))

(9) (append (list 1 2)(list 3 4))
(h) (cdr (cons 3 ()

() (if (eq? (list 1) (list 1)) 2 3)
(i) (quote a)

(k) (cons () '(1))

() ((lambda (x) (+ x X)))

(m) ((lambda (x) (* x x 3) 4) 5)

2. (7 pts) Draw the box and pointer notation for (2 ((3 (4)) 5) 6)



3. (7 pts) Write the interpreter’s representation of this structure:

4. (10 pts)Write the simple recursive-process procedure product-list, which takes two non-nested lists of integers,
and returns the list of integers resulting from multiplying each element of blist by the corresponding element in
alist. If one list is longer, the remaining elements are multiplied by 1.

> (product-list '(4 5 6) (1 2 7))
(4 10 42)

> (product-list '(1 2 3) '(2 2 3 6))
1496

>

5. (5 pts) Write the simple recursive procedwsealethat multiplies each member of a list by some factor. Do not
use the sequence toolkit.

> (scale 2 (list 1 2 3))
(2 4 6)



6. (5 pts) Write scaleusing your sequence toolkit.

7. (5 pts) Write acall to your sequence toolkit that generates the list of the cubes of the even numbers from 1 to
1000. You may use lambdas, but do not separately define procedures.

8. (5 pts) Write acall to your sequence toolkit that generates the matrix shown. You may use lambdas, but do not
separately define procedures.

(O1234) (567809 (1011 12 13 14) (15 16 17 18 19))

Complete the following procedure definitions.

9. (5 pts)

(define (fast-expt x vy)
(cond ((=y 0) 1)

((odd? y)

10. (5 pts)

;You can put this on more than one line if you wish.
(define (filter proc alist)

(accumulate




11. (5 pts)

(define (equals? a b)
(cond ((pair? a)

(else (eq? a h))))
12. (5 pts)
(define (append a b)
(define (iter x vy)
(cond ((null? x) v)

(else

(iter (reverse a) b))

13. (12 pts) Write sort as an accumulation. You may write a helper procedure if needed.

14. (5 pts) What is big O for time for the sorting procedure in 13? Explain.



15. (5 pts) What is big O for time of f1? Explain. (Remember that you aren't as concerned with the result of this
call as you are with the behavior of the process.)

(define (f1 alist)
(accumulate (lambda (a b) (+ (length alist) b))
0
alist))

16. (5 pts) What is big O for time of f2? Explain.

(define (f2 alist)
(accumulate (lambda (x y) (cons (fast-expt 2 Xx) y))

0
alist))

17. (5 pts) Consider the following two procedures. Xenon thinks that one of these should be faster than the other,
but isn’t sure which one. Help Xenon decide, and briefly explain your answer.

(define (one alist) (define (two alist)
(let ((x (length alist))) (* (length alist)(length alist)))
(* x X))



18. (5 pts) Define a functiormake-multiplier that takes a single factor as a parameter and returns a procedure that
multiplies its argument by that factor:

> ((make-multiplier 3) 3)
9
>

(a) (3 pts) Now make a single call to a sequence tool that will use make-multiplier, and detfinge a list of
multipliers that use the factors inthe li& 3 4 5) . After the call x will be a list of procedures.

(define x

(b) (3 pts) Now use the list of multipliers, x, and a single call to a sequence tool to make a list of the results
of calling each multiplier on the number 3, so the result wil(6e9 12 15) . You will need a lambda
function.

19. (5 pts)In class we defined a procedure cons. Fill in the three blanks:

(define cons

(lambda (msg)
(cond ((equal? msg ’car) )

((equal? msg ’cdr) )

(else ’error)))))

20. (3 pts) Extra Credit: The Joel Spolsky article refers to a process that uses two sequence operators, map and
accumulate (but he uses another name for accumulate). What was the name of the process and what company
uses it?



