
CISC280 Final Exam, Fall 2004

NAME

General instructions:

There are 18 questions worth a total of 116 points. Read the problems very carefully.
Identify what kind of answer the problem asks for. If writing a procedure, carefully look at
requirements for input and output, and any restrictions on how it must be written or which
other procedures may be used.

You may assume a list argument will be flat unless it is otherwise specified, and that the
elements will not produce errors for the procedures described.

Do not do unnecessary testing. For example, testing for both list? and null? instead
of using one test and then else would be considered unnecessary testing.

Do not make code unnecessarily inefficient. An extra procedure call here or there is ok,
but do not make an O(n) problem into O(n2).

Do problems you are confident about first. If you finish the problems you know, write
what you do know about other problems to gain partial credit; but erroneous information
may detract from that credit, so don’t make stuff up.

You may use any of the simple procedures we use regularly in class, and the following
procedures (unless you are asked to define them):
apply
append
reverse
map
accumulate
filter
enumerate
eq?
equal? (only if needed)
set!, set-car!, set-cdr! (only if needed)



1. (6 pts) What are the three methods shown in class to evaluate a sequence of expressions
in Scheme?

2. (10 pts) How do objects, such as the message-passing bank accounts we created, differ
from streams with respect to time?

The Meta-evaluator

3. (5 pts) How do you start the meta-evaluator?

4. (5 pts) Describe exactly what changes to the meta-evaluator you would make to add a
new primitive operation, subtraction.

5. (5 pts) Write the function primitive-procedure-names that belongs in the meta-evaluator
(see setup-environment).

6. (10 pts) Write the function list-of-values that belongs in the meta-evaluator (see eval).



Memory

7. (6 pts) Define a fcn last-pair that walks through a proper list and returns the termi-
nating pair.

8. (10 pts) Use last-pair to write append!, which appends two lists.

9. (2 pts) What is the order (big O) of append! ? Be specific.

10. (2 pts) What is the order (big O) of simple recursive append? Be specific.

11. (5 pts) Define two lists and draw them using box and pointer notation. Then show the
box and pointer list that would result from joining the lists with append.

12. (5 pts) Define two lists and draw them using box and pointer notation. Then show the
box and pointer list that would result from joining the lists with append! .



13. (5 pts) Is there any advantage to using append vs. append! ? When would one be
better than another?

Halt

For the halt proof, we assumed that we were given the working code for an imaginary
function (halt? <program> <input>) that returns true if a program stops when given
the input, and false otherwise. We then wrote

(define (try arg)

(if (halt? arg arg) (spam)

’cease))

14. (5 pts) Write a procedure spam that makes the proof work.

15. (5 pts) What argument would you call try on to derive a contradiction?

16. (5 pts)What is the significance of the halt proof to computer science?

Your answer may not go below this line.



Hex Game

Suppose a hex is a list (<letter> <x> <y>). You choose a board representation where
all hexes that have been played are stored in a single binary search tree. Sort hexes
first by x-coord, then by y-coord, i.e. (X 2 5) is less than (X 3 2), and (X 2 5) is
less than (X 2 6).

17. (15 pts) Write a procedure to find if a hex has been played by either player; it takes
a hex and a tree as arguments and returns the hex (if found) or null. Write whatever
supporting procedures you need. Use appropriate procedural abstraction to get full
credit.



18. (10 pts)

Discuss how the performance of this representation compares to storing the played
hexes in a simple list. Be specific about the complexity and interaction between the
game play and the board representation.

End of Exam. Total Points: 116


