CISC 280 Spring 2007 Lab 10

Assignment!

You may assume for these problems that cycles will appear in the backbone of the
list (but you should think about how the problem would be different if the cycle
could be in a nested list).

(define cyclel ' (a b c))
(set—-cdr! (last-pair cyclel) cyclel)

(define cycle2 '(a b c d e))
(set—-cdr! (last-pair cycle2) (cddr cycle?))

1.
2.

Draw cyclel and cycle2.

AS&S problem 3.18. Be sure to test using lists with cycles in different
places. For example, the following code does not work for many cases.
(Can you figure out which cases it does not work for without running it?)

(define (cycle? alist first)

(define (iter alist)
(cond ((null? alist) #f)
((eg? (car alist) first) #t)
(else (iter (cdr alist)))))

(1f (null? alist) #f
(iter (cdr alist))))

. One logical extension to the faulty solution above works, but takes O(n?)

time. Design an algorithm that finds cycles in a list using O(n) time. You
may find it easier to think of the solution using assignment, but your final
code must be strictly functional. Draw a diagram or two and work on this
problem alone for at least fifteen minutes. Hint: Think in terms of pointers,
and have two pointers - one of which moves twice as fast as the other.

'Not this assignment, the kind we do in imperative programming.

1



