
CISC280 Spring 2007 Lab 3

Read the file quote.txt in this directory. You will not need it to write this assignment, but you will
need to know its contents tomorrow, and reading it now gives you an opportunity to play and ask
questions about it in lab.

In class we wrote two procedures, scale and add. Then we looked at them and saw they were
very similar in structure. We were able to abstract away from a specific operation and write map,
so that we could reproduce (scale 5 (list 1 2 3)) by saying

> (map (lambda (x) (* x 5)) (list 1 2 3))

and without needing a special scale function. Indeed, map works well any time we wish to do
the same thing to each member of a list.

Write the two functions sum and product so that they behave as below. What must the base
case be for sum to work correctly? for product?

> (sum ’(1 2 3 4))
10
> (product ’(1 2 3 4))
24

Now, as we did with map, write a linear recursive function reduce that can perform both sum
and product operations on a list. You will have to add one or two parameters so that you can
specify the behavior. One parameter will be the operator required, either + or ∗.

After you have written reduce, consider how the operator argument is applied each time through
the procedure; in particular, what is on the left, and what is on the right? See if you can write a
lambda procedure to pass as an argument to reduce that will leave the list argument unchanged.

If you need to submit (see syllabus if you are unsure) submit your code file(s) and a script of
several well-chosen test cases via MyCourses (due Thursday midnight) and on paper (to your TA’s
mailbox Friday by 1 p.m.) to receive full credit.

When you use MyCourses, remember that you can “upload” files multiple times, but you only
click “submit” once.

1


