
CISC220 Homework 2

Lab portion due October 5th at midnight on Sakai. The paper copy is due Tuesday, October 6th in lab.
Each part is marked as [PAIR] or [INDIVIDUAL] and must be completed accordingly.
Do not use any classes from any template library; the point of these exercises is for you to code from

scratch. All work must be typed, including individual short answer questions.

Academic Honesty Reminder

For parts that are marked as [PAIR] you may work with one other student. Both students must submit
separate copies of the assignment and include the names of both members of the group.

For parts that are marked as [INDIVIDUAL] you may discuss general algorithms with other people,
but you may not share any of your code in any form. You may not help other people debug their programs,
except in the very limited way described on the class website. You may not use any code written by
others, whether they are students or not. The TA and the instructor are available for office hours, and by
appointment if you can’t make hours because of a class conflict.

Assignment

1. [INDIVIDUAL] 24 pts. Find the Big-O notation running time for each of these functions. Make
sure to show your work.

(a) T (n) = 3n + 2n + 5

(b) T (n) = 6n + 3n2 + 1000

(c) T (n) = O(nlogn) + O(1) + O(n) + O(n2)

(d) T (n) = 3T (n/2) + n2

(e) T (n) = 3T (n/3) + n

(f) T (n) = 2T (n/4) + n

2. [INDIVIDUAL] 6 pts. Write a function in C++ with the signature void f(int n) that would produce
the running time in part 1a. You can use comments,

// simple statement

to represent a constant time operation.

3. [PAIR] 40 pts. Consider the LinkedList implementation available on the course website under
homework 2. Implement the following functions on the singly linked list that have declarations in
the LinkedList.h file but are not yet implemented in LinkedList.cpp:

/**
* Returns true if the given integer value is a member of the Collection.

*/
bool member(int) const;

1

/**
* Appends the given integer value to the Collection. Placement index of

* the newly added element is assumed to be last (index=size-1).

*/
void append(int);

/**
* Removes the value corresponding to the index from the Collection.

*/
void remove(int);

/**
* Adds the given integer value to the Collection. Placement index of

* the newly added element is in value order, assuming this LinkedList

* is already sorted from lowest to highest value.

*/
void addSorted(int);

/**
* Adds all of the elements of the given LinkedList to the Collection.

* The given LinkedList and this LinkedList are both assumed to be sorted

* from lowest to highest value. Placement index of all newly added

* elements is in value order.

*/
void addSorted(LinkedList*);

/**
* Appends all of the elements of the given LinkedList in order to the

* Collection. Placement index of the first newly added element is assumed

* to be the previous last (index=size-1). This makes new LinkedList nodes

* for each of the appended values.

*/
void append(LinkedList*);

• Edit the LinkedListTest.cpp to include tests and corresponding output for each of the newly
implemented functions.

• Based on your code, calculate the order of the running time for each function and put this in
your comments for the function (for example, as implemented size has O(n) running time).

• Submit your implemented code and a script file that uses LinkedListTest to test each of your
new functions.

4. [TEAM 30 pts.] Deques (short for double-ended queues) are a data structure that combines the
functionality of both Stacks and Queues. The Deque ADT defines the following six functions:

2

/**
* Returns the value at the back of the deque, but does not remove it.

*/
int back();

/**
* Returns the value at the front of the deque, but does not remove it.

*/
int front();

/**
* Pushes the given value to the back of the deque.

*/
void pushBack(int);

/**
* Pushes the given value to the front of the deque.

*/
void pushFront(int);

/**
* Pops the back element off of the deque and returns its value.

*/
int popBack();

/**
* Pops the front element off of the deque and returns its value.

*/
int popFront();

Implement a deque using your LinkedList class. You will need to do the following:

• Add a Deque.h definition for a Deque, and use multiple inheritence to extend the Deque with
your LinkedList.

• Implement each of the Deque ADT functions using your LinkedList data structure.

• What is the running time for each operation using your singly-linked list?

• Improve the running time so that all of the Deque operations run in O(1) time by implementing
a doubly-linked list. This will require you to add a previous pointer to the LinkNode structure,
and you will need to update your implementation for functions in Part 3 to update this pointer.

• Show your Deque working by adding additional test cases to the LinkedListTest.cpp file.

Your solution must clean up ALL memory allocated from the heap before exiting the main func-
tion. You must also document every function in your code and use descriptive variable names.

Submission of completed Homework 2 is due October 5th at midnight. You should submit the follow-
ing to Sakai and printed copies to your TA:

3

1. Short answers for Part 1.

2. Code for Part 2 (does not need to compile or run).

3. Code for Part 3, including Makefile.

4. Script output showing execution of Code for Part 3.

5. Code for Part 4, including Makefile.

6. Script output showing execution of Code for Part 4 (and any modified code from Part 3).

4

