
CISC 220 – 010 Project #1 Due Monday, October 23, 2000

For our first program project, we will apply lists, stacks and queues to write a
small calculator program. The following little sample run illustrates how the
program should work:

% Calculate
A = 2
B = 5
C = 3
A + B * C
17
(A + B) * C + A
27

Notice that the calculator can process simple assignment of a value (integers only)
and simple arithmetic expressions involving variables (A-Z), operators (+. -. *, %,
and /), and parenthesis ((, and)). These are the only symbols the calculator can
deal with.

Part A – The Symbol Table) First, we need a way to hold variable names and their
values. Do this by defining an object, called Assignment, with two fields: symbol
(1 char), and value (int). This object can be a simple struct. Next, we’ll use a
linked list to hold all of the Assignments. Do this by creating a new list class,
called SymbolTable, which privately inherits the list class, and has the following
interface:

SymbolTable();
~SynbolTable();
empty();
getValue(char, int&);
storeSymbolValue(char, int);
dumpTable();
clearTable();

Remember that the derived class can use the base class member function to
implement the new interface. Once this class is coded up, make a small driver
program to test the class – making sure every function works in all cases. When
you have verified the correctness of the SymbolTable class, make a script file
(Proj1-A.scr) in which you cat the class header file, your driver, and show a
sample run. Use the following input in your test; after the input is finished,
retrieve and display a value, and dump the table (i.e., print the whole thing out in
some readable fashion), then clear the table. You should process only simple
assignments, consisting of variable = value. All other input should be flagged as
erroneous at this point.

Sample input:

D = 10
= 10 ---Error
A = 0
A + B ---Error
M = -5
Z = 44
N = A + D ---Error
B = 8
C = -13
A = B ---Error
D = 15

Part B – Input of Expressions) Input expressions for our little calculator are
simply a sequence of characters; a legal expression is one consisting of only the
characters mention above, and white space. All others are erroneous. In this part,
write a driver program that reads a line of characters, one character at a time,
discard any white space, and stores the characters in a queue. If the expression is
erroneous, clear the queue, and read another line; otherwise print the contents of
the queue by dequeueing each character and printing it. Once this code works,
make a script file (Proj1-B.scr) containing a cat of the queue class header file,
this driver, a compile and a run. Use the linked version of the queue class (without
inheritance). Use the following input as a test – at this point don’t check for
balanced parenthesis.

A + B – C * D
A+B-C*D
A*(B + D) – G
A + 10 -----ERROR
AB – CD -----ERROR
(A / B + D % F *(A + B)) * C
(A – B)
A + B – C.D + R -----ERROR

Part C – Infix to Postfix) Infix form of expression means the operator is between
its two operands – as in A + B * C. Postfix form of expression means the
operator directly follows its operators (HP calculators used to use this form called
reverse polish notation). For example, the postfix expression A B C * + is
equivalent to the preceding infix expression. There are two nice things about
postfix expressions: 1) the lack of parenthesis; for example, A B + C * is

equivalent to the infix expression (A + B) * C, and 2) their ease of evaluation by
programs.

Our next job is to take an infix expression (in a queue from part B) and convert it
to a postfix expression, and store that in another queue for further processing.
There is a neat little algorithm for doing this conversion, which goes as follows.

Assumption: We have a queue representing a valid infix expression
involving only operators +, -, *, /, %

Algorithm:
Initialize an operator stack, s

While there are still characters in the infix expression
Get a character
Case

An operand output to result queue

‘(‘ push ‘(‘ onto s
‘)’ pop and output all operators

until encountering a ‘(‘ then pop
the ‘(‘

‘*’, ‘/’, or ‘%’ pop and output all ‘*’, ‘/’, and
‘%’ operators from s, down to but
not including the top most ‘(‘,
‘+’, ‘-‘, or to the bottom of the
stack

‘+’ or ‘-‘ pop and output all operators down
to but not including the top most
‘(‘, or to the bottom of the
stack

end of expression pop and output all operators.

Notice that you need two queues – the input queue representing the infix
expression, the result queue representing the postfix expression and a stack for
operators. Write a function that implements this conversion algorithm. Then write
a driver to test this function. Once it works, make a script file (Proj1-C.scr) in
which you cat your conversion function, your driver, and show a sample run.

Part D – Evaluation) Given a valid postfix expression (in a queue) it’s a simple
matter to evaluate it – but you need a stack again – this time for operands! Here’s
the algorithm.

Assumption: We have a queue representing a valid postfix
expression.

Algorithm:
Initialize an operand stack s

While there are still characters in the input queue

Input a character
Case

Operand convert to its integer value (using
your symbol table and push the value
on the stack s

Operator pop the two operands, compute the
result and push it on the stack s

Pop and display the answer.

Implement this algorithm as a function – call it Evaluate. Test the function with a
small driver. Once the function works, make a script file (Proj1-D.scr) in which
you cat your Evaluate function and your driver, and show a sample run.

Part E – The Calculator) Finally! We can put all these pieces together to make a
little program that inputs assignments, and infix expressions, and outputs results.
All you have to do is take all the pieces from parts A-D, and add a little “glue” to
make the program. There are a few little subtleties, though. For example, you
need to deal with both A = 5 and A + B + C, as inputs from the user. I’ll let you
decide how fancy to make it at this point. Just be sure to use the structure and
functions as developed, and don’t stray too far form the original problem. When
you have a working calculator, make a script file (Proj1-E.scr) in which you cat
you main program, and any new functions you wrote for this part, and show a
sample run.

Extra Credit) Hmmm…. Do we really need this? ☺ Well, ok, for the crazy people
out there, here are some additional things we might want our calculator to do. 1)
Deal with long expressions by allowing the user to indicate a continuation with a
special character (like a tab or backslash); 2) When do we check to see if a symbol
is in the symbol table? If we wait until evaluation, we could prompt the user for a
value of an undefined symbol (and add it to the symbol table). 3) How about
saving the answer of one expression to use later? All we have to do is allow things
like this: A = B + C. 4) Finally, (for the really crazy people!), we could make a
little baby language out of this mess! The keywords could be SET, PRINT, INPUT,
etc., and then you could write little programs in this language – stick them in a
source file – and feed them to your calculator (now it should be called an
interpreter).

What to hand in: Hand in all the script files generated above (and the extra credit
if you’re one of the crazy people!), stapled together as one set. (Don’t forget to print
your name on the front page!)

