
Recursion

● Recursion is a computer programming 
technique that allows programmers to divide 
problems into smaller problems of the same 
type.

● You can think of it as a “divide and conquer 
strategy” for programming.

● Classic examples:
– Raising to a Power function.
– Finding Fibonacci sequence numbers.



What is recursion exactly?

● Recursion is a method for solving problems 
by defining functions which call themselves.

● If a function has a point in which it calls 
another instance of itself, it is considered 
recursive.

// A function which takes a double value x
// and raises it to the non-negative power y
double power(double x, int y){

if(y == 0)
return 1;

else
return x*power(x,y-1);

}



What tasks are appropriate for 
recursion?

● Any task which can be broken down into 
smaller subparts of the same problem.
– The power example: x^y = x*x^(y-1)
– GCD: The greatest common divisor can be found 

by performing gcd on mathematical derivatives 
of the original numbers.

● It is often easier to write these sorts of 
problems in a recursive manner than in an 
iterative (that is, without having a function call 
itself) manner.
– Any problem that can be solved recursively can 

be solved iteratively!



What happens with recursion?

● Recall the stack we have talked about during 
class.

● Each time you call the recursive function, a 
new set of information (the call frame) is 
placed on the stack, and computation begins.

● When the function completes, the call frame 
and associated variables are removed, and 
the previous call frame continues where it left 
off.



Advantages to recursive 
programming

● Simpler code
● Frequently, it is more understandable – if 

you've programmed well!
● Often, it is a good way to lay the framework 

to make an iterative function.



Disadvantages to recursive 
programming

● Usually slower to execute than iterative 
methods

● Tend to require more space
● Stack overflow potential!



An example void function, 
recursively

● Let's print a number vertically:
void printVertical(int n){

if(n < 10)
cout << n << endl;

else{
printVertical(n/10);
cout << n % 10 << endl;

}
}

● How does this work?



An example of recursive non-
void functions

● How can we return the factorial of a number?
// Function to compute n!
// n*n-1*...*2*1
int factorial(int n){

if(n <= 1)
return 1;

else
return n*factorial(n-1);

}



How recursion works, 
specifically

● We already know: every time a function is 
called, information about it is placed on a 
stack.

● Technically, the computer will let you 
continue to call functions this way until you 
run out of space.

● So, your function must have a case that is a 
stopping point – a “base case.”

● This stopping case will then (if necessary) be 
returned up the chain of recursive calls.

● If you don't have an appropriate stopping 
case, you get infinite recursion!



Designing a recursive function

● Three properties to satisfy
– No infinite recursion – does your program 

eventually reach a base case?
– Are your base cases correct?
– Are recursive cases performed properly?

● If you can satisfy those properties, your 
function will behave properly.



Going from recursive to 
iterative

● In recursive functions, we generally work 
from an unknown answer to a known smaller 
answer, and then use that smaller answer to 
solve the larger problems.

● Sometimes this can translate directly to an 
iterative solution.

● Sometimes, you may want to think of it 
backwards – work from the known solution 
up!

● The main thought should be – how can this 
be done within a loop? What do I need to 
know in that loop?



Trying to make your own 
recursive function

● Let's stop here and let you try to write your 
own fibonacci sequence functions.

● Working with someone else, write a full 
function that is recursive.

● The function should take one integer 
parameter – the fibonacci number to look for 
(i.e. the 2nd fibonacci number, the 3rd, etc.) 
and return the integer that has the value of 
that fibonacci number.

● Once you've finished – think how you might 
make the function iterative.



Separate Compilation

● We have many times discussed the notion of 
encapsulation:
– Separation of interface and implementation.

● How can we reflect this better in our coding?
– C++ compilers have methods which allow you to 

put different parts of code in different files, then 
recompile them together.



How should you divide your 
code?

● Typically, you ought to place each class you 
create in a separate file set. You will have 
your header file (the interface), and your 
implementation file (function definitions).

● The header file will be a file ending with the 
suffix “.h” instead of the usual “.cc” or “.cpp.”

● This header should contain the interface to 
your code – this is your class definition, and 
the prototypes of any non-member function 
you want them to have access to.
– Technically we would like to keep them from 

seeing any private members of the class, but 
that isn't possible.



How do I use this header file?

● The #include directive.
– When you say #include <iostream>, the compiler 

understands that you mean you want it to place 
the code from the iostream file in this spot.

– The <> brackets tell the compiler to look for this 
information in the location used for pre-defined 
headers.

– You will use #include “myClass.h” to include 
your code. This tells the compiler to look in the 
local directory (or a pre-defined location for 
programmer-defined headers) for the file.



#ifndef

● Since the include directive simply places 
code into your program, you don't want it to 
place the same code over and over – this will 
lead to errors! However, you may need to 
indicate to the compiler that you are using 
your header in many different files.

● How do you make it so it only processes your 
definition once?

● You use a technique that tells the compiler 
not to process your header again if it has 
already been processed once.



#ifndef

● Enclose your header like this:
#ifndef _MYHEADER_H_
#define _MYHEADER_H_
<header file code>
#endif

● This can be thought of as telling the compiler
– If myHeader.h has not been seen yet
– Define myHeader.h
– Include the code up until endif.

● Really, you're just putting _MYHEADER_H_ 
on a list that says “this keyword has been 
seen.” But it does what it looks like, in a way.



How do I define the functions?

● Write your implementation file for 
“myClass.h”. This should be named 
“myClass.cpp” and use #include “myClass.h” at 
the beginning.

● The implementation file will have all the 
function definitions from function declared in 
the header file, as well as prototypes and 
definitions for any functions that aren't part of 
the interface.



How do I compile all of this?

● Now to compile, instead of compiling one file 
with all the definitions directly, you will 
compile in stages.

● First you will need to compile each 
implementation file into an 'object file.'

CC myClass.cpp -c -o myClass.o
CC myClass2.cpp -c -o myClass2.o
...

● Then, compile your application file as an 
object.

CC myProgram.cpp -c -o myProgram.o



How do I compile all of this?

● Finally, compile your program by letting the 
compiler link all your object files and make 
your final program:

CC myProgram.o myClass.o myClass2.o -o 
myProgram

● How to think of compilation and object files:
– What the compiler does is create a series of files 

which may be incomplete, and lets them be 
prepared to be linked with other object files 
which will fill in the missing spots.



Why bother?

● What are the advantages of this?
– Makes your code separated according to 

encapsulation principles.
– Makes your code easier to read – think of your 

header file as providing the instructions on how 
to use the class.

– Makes reuse of classes you design MUCH 
easier.

● No more cutting and pasting definitions into new files!



Doing all this compilation is 
annoying.

● There is a useful tool called make which 
allows you to define instructions on how to 
compile a program.

● Make reads a Makefile, and proceeds 
through it so it can run commands you tell it 
to. It will also check to see if your program is 
out of date, and recompile if needed.

● To run make, you need to create a Makefile.



Writing a makefile

● The file must be named Makefile.
● It follows a certain syntax:

– At the top, place comments such as who you are 
and when the file was written. Use # like //.

– Define any variables you might want. Just place 
on a single line <var_name>=<string>. You can 
access these variables in the make file using 
${var_name}

– Dependencies: These are the heart of a 
Makefile. They use this format:
<dependecy_name>: <other_d1> <other_d2>...

<command 1>
<command 2>
...



Understanding dependencies

● The idea is somewhat simple: you define a 
dependency by “naming” a series of 
commands (<dependency_name>).

● Before the commands can be executed by 
make, it must make sure the other 
dependencies (<other_d1>,<other_d2>) are 
run first, or are already up to date.

● Then, it runs the commands you listed. Each 
command MUST be on a separate line with a 
SINGLE TAB IN FRONT.



Using dependencies

● Think of your Makefile as a mini-program 
which runs your compilations for you.

● The dependencies say which steps should 
be done first.

● Note: you should always have the first 
dependency listed be the dependency you 
want completed at the end. You can specify 
targets, but if you don't, this is the one that 
will be run.



Midterm Exam Review

● Topics to expect on the exam (not a complete 
list!):
– C++ basics: data types and basic input/output, basic 

terminology, #include, namespaces
– Flow control: loops, how they work, when to use them
– Functions: how they work, using parameters, 

understanding scope, returning values
– Parameters: Call-by-Value vs. Call-by-Reference, 

overloading functions 
– Arrays: Declaring arrays, multi-dimensional arrays, using 

arrays in functions
– Structures: How to define them, what their purpose is, how 

to use them and access them
– Dynamic memory: Heap vs. Stack, Pointers, allocating 

memory, creating dynamic arrays, delete, new, linked lists


