Recursion

* Recursion is a computer programming
technique that allows programmers to divide
problems into smaller problems of the same
type.

* You can think of it as a “divide and conquer
strategy” for programming.

* Classic examples:
- Raising to a Power function.
- Finding Fibonacci sequence numbers.

What is recursion exactly?

» Recursion is a method for solving problems
by defining functions which call themselves.

e |f a function has a point in which it calls
another instance of itself, it is considered
recursive.

// A function which takes a double value X
// and raises it to the non-negative power vy
double power (double x, 1nt vy) {
1if(y == 0)
return 1;
else
return x*power (x,y-1);

I What tasks are appropriate for
I recursion?

smaller subparts of the same problem.

— The power example: x*y = x*x*(y-1)

- GCD: The greatest common divisor can be found
by performing gcd on mathematical derivatives
of the original numbers.

* |t is often easier to write these sorts of
problems in a recursive manner than in an
iterative (that is, without having a function call

itself) manner.
- Any problem that can be solved recursively can
be solved iteratively!

I * Any task which can be broken down into

I What happens with recursion?

* Recall the stack we have talked about during
I class.

» Each time you call the recursive function, a
new set of information (the call frame) is
placed on the stack, and computation begins.

* When the function completes, the call frame
and associated variables are removed, and
the previous call frame continues where it left
off.

I Advantages to recursive
I programming

* Frequently, it is more understandable — if
you've programmed well!

» Often, it is a good way to lay the framework
to make an iterative function.

I e Simpler code

I Disadvantages to recursive
I programming

methods
* Tend to require more space
» Stack overflow potential!

I » Usually slower to execute than iterative

I An example void function,

I recursively
» Let's print a number vertically:
vold printVertical (1nt n) {
I if(n < 10)
cout << n << endl;
else{

printVertical (n/10) ;
cout << n % 10 << endl;
}
}

« How does this work?

I An example of recursive non-
I void functions

I « How can we return the factorial of a number?

// Function to compute n!
// n*n-1*...%2%]
int factorial (1nt n) {
if(n <= 1)
return 1;
else
return n*factorial (n-1);

How recursion works,
specifically

» We already know: every time a function is

called, information about it is placed on a
stack.

Technically, the computer will let you
continue to call functions this way until you
run out of space.

So, your function must have a case that is a
stopping point — a “base case.”

This stopping case will then (if necessary) be
returned up the chain of recursive calls.

If you don't have an appropriate stopping
case, you get infinite recursion!

I Designing a recursive function

- No infinite recursion — does your program
eventually reach a base case?

— Are your base cases correct?

— Are recursive cases performed properly?

* |f you can satisfy those properties, your
function will behave properly.

I * Three properties to satisfy

I Going from recursive to
I iterative

from an unknown answer to a known smaller
answer, and then use that smaller answer to
solve the larger problems.

* Sometimes this can translate directly to an
iterative solution.

» Sometimes, you may want to think of it
backwards — work from the known solution
up!

* The main thought should be — how can this
be done within a loop? What do | need to
know in that loop?

I * |n recursive functions, we generally work

I Trying to make your own
I recursive function

own fibonacci sequence functions.

» Working with someone else, write a full
function that is recursive.

* The function should take one integer
parameter — the fibonacci number to look for
(i.e. the 2™ fibonacci number, the 3rd, etc.)
and return the integer that has the value of
that fibonacci number.

* Once you've finished — think how you might
make the function iterative.

I * Let's stop here and let you try to write your

Separate Compilation

* We have many times discussed the notion of

encapsulation:
- Separation of interface and implementation.

* How can we reflect this better in our coding?
— C++ compilers have methods which allow you to
put different parts of code in different files, then
recompile them together.

How should you divide your

code?

* Typically, you ought to place each class you
create in a separate file set. You will have
your header file (the interface), and your
implementation file (function definitions).

* The header file will be a file ending with the
suffix “.h” instead of the usual “.cc” or “.cpp.’

* This header should contain the interface to
your code — this is your class definition, and
the prototypes of any non-member function

you want them to have access to.
— Technically we would like to keep them from
seeing any private members of the class, but
that isn't possible.

b

I How do | use this header file?

- When you say #include <iostream>, the compiler
understands that you mean you want it to place
the code from the iostream file in this spot.

- The <> brackets tell the compiler to look for this
information in the location used for pre-defined
headers.

— You will use #include “myClass.h” to include
your code. This tells the compiler to look in the
local directory (or a pre-defined location for
programmer-defined headers) for the file.

I The #include directive.

I #ifndef

code into your program, you don't want it to
place the same code over and over — this will
lead to errors! However, you may need to
iIndicate to the compiler that you are using
your header in many different files.

 How do you make it so it only processes your
definition once?

* You use a technique that tells the compiler
not to process your header again if it has
already been processed once.

I » Since the include directive simply places

I #ifndef

#ifndef MYHEADER H
#define MYHEADER H
<header file code>
#endif

* This can be thought of as telling the compiler
- If myHeader.h has not been seen yet
- Define myHeader.h
- Include the code up until endif.

» Really, you're just putting MYHEADER H
on a list that says “this keyword has been
seen.” But it does what it looks like, in a way.

I » Enclose your header like this:

How do | define the functions?

» Write your implementation file for
“‘myClass.h”. This should be named
‘myClass.cpp” and use #include “myclass.h” at
the beginning.

* The implementation file will have all the
function definitions from function declared in
the header file, as well as prototypes and
definitions for any functions that aren't part of
the interface.

I How do | compile all of this?

* Now to compile, instead of compiling one file
I with all the definitions directly, you will
compile in stages.
* First you will need to compile each
iImplementation file into an 'object file.’

CC myClass.cpp -¢ -o myClass.o
CC myClassZ2.cpp -¢ -o myClass2.0

. Th.e.n., compile your application file as an
object.

CC myProgram.cpp —-c -0 myProgram.o

I How do | compile all of this?

* Finally, compile your program by letting the
I compiler link all your object files and make
your final program:

CC myProgram.o myClass.o myClass2.0 -0
myProgram

* How to think of compilation and object files:

- What the compiler does is create a series of files
which may be incomplete, and lets them be
prepared to be linked with other object files
which will fill in the missing spots.

I Why bother?

- Makes your code separated according to
encapsulation principles.

- Makes your code easier to read — think of your
header file as providing the instructions on how
to use the class.

- Makes reuse of classes you design MUCH

easier.
 No more cutting and pasting definitions into new files!

I * What are the advantages of this?

Doing all this compilation is
annoying.

* There is a useful tool called make which
allows you to define instructions on how to
compile a program.

 Make reads a Makefile, and proceeds
through it so it can run commands you tell it
to. It will also check to see if your program is
out of date, and recompile if needed.

* To run make, you need to create a Makefile.

I Writing a makefile

* |t follows a certain syntax:
- At the top, place comments such as who you are
and when the file was written. Use # like /.
- Define any variables you might want. Just place
on a single line <var name>=<string>. YOU can
access these variables in the make file using

${var name}

- Dependencies: These are the heart of a

Makefile. They use this format:

<dependecy name>: <other dl> <other d2>...
<command 1>
<command 2>

I The file must be named Makefile.

Understanding dependencies

* The idea is somewhat simple: you define a
dependency by “naming” a series of
commands (<dependency name>).

» Before the commands can be executed by
make, it must make sure the other
dependencies (<other _d1>,<other _d2>) are
run first, or are already up to date.

* Then, it runs the commands you listed. Each
command MUST be on a separate line with a
SINGLE TAB IN FRONT.

I Using dependencies

which runs your compilations for you.

* The dependencies say which steps should
be done first.

* Note: you should always have the first
dependency listed be the dependency you
want completed at the end. You can specify
targets, but if you don't, this is the one that
will be run.

I * Think of your Makefile as a mini-program

Midterm Exam Review

» Topics to expect on the exam (not a complete

list!):

- C++ basics: data types and basic input/output, basic
terminology, #include, namespaces

- Flow control: loops, how they work, when to use them

- Functions: how they work, using parameters,
understanding scope, returning values

- Parameters: Call-by-Value vs. Call-by-Reference,
overloading functions

- Arrays: Declaring arrays, multi-dimensional arrays, using
arrays in functions

— Structures: How to define them, what their purpose is, how
to use them and access them

- Dynamic memory: Heap vs. Stack, Pointers, allocating
memory, creating dynamic arrays, delete, new, linked lists

