I Overloading Operators

» Last time we discussed the string class
I - Strings can be concatenated using +, and
assigned using =
- This is done with operator overloading

 Like function overloading, operator
overloading lets you redefine how (most)
operators work with arguments as operands.

I Operators

write code a little easier:
- 5 + 6 is essentially the same as calling +(5,06).
- The arguments are the operands, and the
function is the operator.

I » Operators are a nice convention that lets you

» C++ provides a way to override these
operators and allow them to work with
classes.

I Example

represented monetary values:

class Money{
public:

I Assume you had a class called Money which

private:
int dollars;
int cents;

by
* |t would be possible to define the member
function add(Money value) which would add

two Money objects together...

Example

* But why not make a way to let you do this?

Money valuel (1,2), value2(2,3), value3;
value3 = valuel + wvalue?2;

* With operator overloading, you can.

* The basic prototype syntax to start with:

const Money operator + (const Money valuel,
const Money value?2) ;

 |n this case, we are passing in Money by reference,
and returning another Money. (Ignore the const for
now). However, call-by-value can be used, any type
can be used for arguments (as long as one is a class),
and any type can be returned.

I Overloading Operators

* Note that to overload the operator, we have

I given “operator +” in the prototype, showing
that we are defining a new version of a

particular operator.
- You cannot define new operators!
— This version of + is not a member of the Money

class, so to use it we will need Money to have

mutators and accessors.
« Later we will look at how to make a member operator.

- We can also overload unary operators (i.e.
taking a single argument) like -, and overload the

comparators.

I Overloading Operators — Non-
I member version

* You cannot redefine operators for basic
types — at least one of your operands must
be a class type.

* You must use the keyword operator to
overload an operator.

» Syntax for binary operator overloading:

<return type> operator <symbol>(<argument 1>,
<argument 2>);

» Syntax for unary operator overloading:

<return type> operator <symbol>(<argument>);

I * Most but not all operators can be overloaded.

I An example of how to do non-

I member operator overloading
*A shortened Money class and overloadings:

class Money{
public:
Money (1nt newDollars, int newCents);
int getDollars () const;
int getCents () const;
vold output () const;
private:

int dollars;
int cents;
by
const Money operator + (const Money & valuel,
const Money & value?);

const Money operator - (const Money & valuel,
const Money & value?);
bool operator ==(const Money & valuel,

const Money & valueZ2)
const Money operator - (const Money & value);

Defining the + overload

» Overloading addition of Money:

const Money operator + (const Money & valuel,
const Money & value?2) {
valuel.getDollars () *100 +
valuel .getCents () ;
valueZ.getDollars () *100 +
valueZ.getCents () ;
int sumAllCents = allCentsl + allCents?2;
int absAllCents = abs(sumAllCents);
int finalDollars = absAllCents/100;
int finalCents = absAllCents % 100;
1f (sumAllCents < 0) {
finalDollars = —-finalDollars;
finalCents = —-finalCents;

int allCentsl

int allCents?

}

return Money (finalDollars, finalCents);

I Defining the == and unary -

I overloads
» Overloading equivalence/negative of Money:
const Money operator - (const Money & value) {
return Money (-value.getDollars(),
-value.getCents ()) ;

}

bool operator ==(const Money & valuel,
const Money & value?2) {
return ((valuel.getDollars () == value2.getDollars ()

&& (valuel.getCents () == value2.getCents{()));

I Overloading is done!
* |t is now possible to use +,-,==, and — with
I Money in a program.

» Since they are non-member, we needed
accessor and mutator functions.

* You probably noticed const a lot.
- This is to prevent the Money returned from the
addition from being changed immediately!
- Generally, use const for operator overloading
unless you have a good reason not to.
* Unary operators like ++,-- can also be

overloaded.

I Overloading operators as a
I member

member: you place the prototype within your

class definition, and omit the first argument.

- The first argument is now the calling object.

- Since it is a member function, private variables
can be called directly!

- While it is more efficient and more Object-
Oriented to use member operators, this version
does have drawbacks.

I * Very similar to overloading as a non-

An example of how to do

member operator overloading
*A shortened Money class and overloadings:

class Money{
public:
Money (1nt newDollars, int newCents);
int getDollars () const;
int getCents () const;
vold output () const;
const Money operator + (Money & valueZ) const;
const Money operator - (Money & value?2) const;

bool operator ==(const Money & value?2) const;
const Money operator -() const;
private:

int dollars;
int cents;

b g

I Defining the + overload as a
I member

const Money operator + (Money & valueZ2) {
int allCentsl = dollars*100 + cents;
int allCents?2 = valueZ2.dollars*100 +
value?.cents;
int sumAllCents = allCentsl + allCents?2;
int absAllCents = abs(sumAllCents) ;
int finalDollars = absAllCents/100;
int finalCents = absAllCents % 100;
1f (sumAllCents < 0) {
finalDollars = -finalDollars;
finalCents = —-finalCents;

I » Overloading addition of Money:

}

return Money (finalDollars, finalCents);

I Defining the == and unary —
I overloads as members

» Overloading equivalence/negative of Money:
const Money operator -() {
return Money (-dollars, -cents);

}

bool operator ==(const Money & value?2) {
return ((dollars == wvalueZ2.dollars)
&& (cents == wvalueZ2.cents)):;

I Defining as Member Operators

- You can now access without accessors.

- The first argument is now just the calling object.

- Remember to add const at the end of the
prototype and definition to make sure the calling
object can't be changed.

- Also remember to add the scope to your

definition now:
bool Money::operator == (const Money & value?2) {
return ((dollars == wvalueZ2.dollars)
&& (cents == wvalueZ2.cents));

I » Making the definitions is very similar

I Let's work on doing overloading
I as a class

that | wrote for a class called Fraction.

* |'ll hand out this blanked version of the code.

* Work in groups of 2 or 3 and try to fill it out
on your own, and we'll see how well we can
get it to work.

 After you finish, think about how you might
change it to use member functions.

I * |'ve deleted the prototypes and definitions

I Using Constructors for
I Automatic Type Conversion

» Recall how we defined Money and its
I overloaded operators earlier. How would this
code work?

Money original (100, 60), fullAmount;
fullAmount = original + 25;
fullAmount.output () ;

* This outputs $125.60, but how?

- 25 Is not appropriate. We didn't overload + to
take a Money and an int.

- If we have a constructor that converts a single int
into Money, though...

I How the system knows what to
do

* Let's say you pass in
I original + 25;

* The system starts by looking for an overload
of + that has a Money for argument 1 and an
int for argument 2.

* When it doesn't find that, it will try to make it
fit the only overload we made: Money and
Money.

* S0, It uses (if it exists) the single int
constructor to automatically convert the int to
Money!

When doesn’'t automatic type
conversion work?

 |f you don't have an appropriate constructor

defined.
» Keep in mind, this is just like with other overloaded

functions. Remember the matching rules from the
first time we talked about overloading!

* Note: Member operators will behave oddly.
- Ifyou try to do 25 + original;, the non-member will

handle this fine.
- But, member operators MUST have the class type

as the first operand — an int like 25 cannot make a

call!
- This is that previously mentioned pitfall of member

operators.

I Friend Functions

overloaded operator, we needed to use
accessors to define it properly.

 While this is sufficient, it is also inefficient
and harder to read.

* How can we eliminate this intermediate step?
(Hint: Look at the slide title!)

* Yes, friend functions!

* A friend function of a class is not a member
function, but has access to private members
of that class.

I * When we previously defined a non-member

I Using friend functions

give its prototype in the class definition with
the keyword friend in front.

* You can then define it normally, but any
objects of that class used in the function can
access the private members of the class.

class Money({
public:

I * To make a function a friend of a class, you

friend const Money operator +(const Money &
value 1, const Money & value 2);

}

const Money operator + (const Money & value 1,
const Money & value 2){....}

I Friend functions

operators are most common.

* You can make a function a friend of as many
classes as you like — just put the friend
prototype in each class that applies.

* Depending on who you ask, friend functions
are not “pure” object-oriented functions. They
break the spirit of encapsulation. (Though not
as much as a non-member, non-friend
overload, perhaps.)

* More on the use of friends later.

I * Any function can be a friend, but overloaded

I Compilers without friends

« Some older compilers don't handle friends
I properly. Be warned!

I Rules for operator overloading

» At least one argument must be of a class type.
I * Most operators can be overloaded as a no-

member, a member, or a friend.

» Some operators can only be done as
members: =,[],->,().

* You cannot make new operators.

* You cannot change the number of arguments
an operator takes!

* Precedence does not change.

* ..., 8izeof,?:, and .* cannot be overloaded.

* Overloaded operators have no default
arguments.

I Return by Reference

* A reference is the name of a storage location.

int robert;
1int& bob = robert;
* This may be familiar from call-by-reference — a

reference is effectively an alias for a variable.
e These references can be returned:

double& sampleFunction (double& var) {
return var;

}
* This simple example you let you do this:

double m = 99;

cout << sampleFunction (m) << endl;
sampleFunction (m) = 42;

cout << m << endl;

I Return by reference

* The previous example would output 99, then
42.

 Note: never return the reference to a local
variable!

» |-value and R-value:
- L-value is something that can appear on the left
side of an assignment operator.
- R-value is something that can appear on the
right side of an assignment operator.
- In order to use the object returned by a function
as an l-value, it must be returned by reference.

* We will use this return by reference to
overload certain operators.

Overloading << and >>

* You may remember from our discussion of
streams that << and >> return the first

variable when they complete.

- This allows us to string << or >> together:
e cout << x<<“isequalto”<<y;

* S0, to overload these, the first parameter is
an appropriate stream type (output for <<,
iInput for >>) and the second is your class

type.

e Ostreamé& operator << (ostreamé& out,
const Money& value) ;

Overloading <<

* How might you do this?
ostream& operator <<(ostream& out, const
Money& value){
/I As a regular non-member overload
value.print(out);
return out;
}
{// As a friend function
out << value.variable;
return out;

J

I Two schools of thought

>> as friend functions.

* Most professors | have spoken with do not
recommend this.

* Many professors and professionals use
friend rarely if at all!

I * The book recommends overloading << and

I Against friend functions

them:
- They violate the security/encapsulation principles
of Object Oriented Programming.
- They tend to become overly complex to program

and use, and lead to bad programming practices.
e Yes, you can use an overloaded +, but you can also
write a member add() function or some other function

that replicates the functionality you need.
- For example, rather than overload <<, make a char*
toString() member function, and send that to the stream.

- They aren't actually needed in most cases!
- Depending on who you ask, even operator
overloading isn't needed.

I * Friend functions have several knocks against

I Overloading
I increment/decrement

define two overloads:
- One with no argument (for prefix)
- One with a single int argument (for postfix)

* The single int argument is irrelevant — it just
lets the compiler know which version to call.
* This should be a member operator.

I * To make these work properly, you must

Overloading array operator

* You can define your own bracket functionality
so that you can access a class with x[0] if
you like.

* |t must be a member operator, and it must
take a single int parameter.

I Overloading Assignment
I Operators

» Just know that doing this lets you override

* We will discuss this later.
I how to do copying and assignment.

I Friend classes

class X;

I * We will not use this. Should you ever see it:

class Y{
public:...
friend X; ...
private:

J

class X{...

* This lets objects of class X access private
variables of objects of class Y.

