
Overloading Operators

● Last time we discussed the string class
– Strings can be concatenated using +, and

assigned using =
– This is done with operator overloading

● Like function overloading, operator
overloading lets you redefine how (most)
operators work with arguments as operands.

Operators

● Operators are a nice convention that lets you
write code a little easier:
– 5 + 6 is essentially the same as calling +(5,6).
– The arguments are the operands, and the

function is the operator.

● C++ provides a way to override these
operators and allow them to work with
classes.

Example

● Assume you had a class called Money which
represented monetary values:

class Money{
public:

...
private:

int dollars;
int cents;

};
● It would be possible to define the member

function add(Money value) which would add
two Money objects together...

Example

● But why not make a way to let you do this?
Money value1(1,2), value2(2,3), value3;
value3 = value1 + value2;

● With operator overloading, you can.

● The basic prototype syntax to start with:
const Money operator +(const Money value1,

 const Money value2);
● In this case, we are passing in Money by reference,

and returning another Money. (Ignore the const for
now). However, call-by-value can be used, any type
can be used for arguments (as long as one is a class),
and any type can be returned.

Overloading Operators

● Note that to overload the operator, we have
given “operator +” in the prototype, showing
that we are defining a new version of a
particular operator.
– You cannot define new operators!
– This version of + is not a member of the Money

class, so to use it we will need Money to have
mutators and accessors.

● Later we will look at how to make a member operator.
– We can also overload unary operators (i.e.

taking a single argument) like -, and overload the
comparators.

Overloading Operators – Non-
member version

● Most but not all operators can be overloaded.
● You cannot redefine operators for basic

types – at least one of your operands must
be a class type.

● You must use the keyword operator to
overload an operator.

● Syntax for binary operator overloading:
<return_type> operator <symbol>(<argument 1>,

 <argument 2>);
● Syntax for unary operator overloading:
<return_type> operator <symbol>(<argument>);

An example of how to do non-
member operator overloading

●A shortened Money class and overloadings:
class Money{
public:

Money(int newDollars, int newCents);
int getDollars() const;
int getCents() const;
void output() const;

private:
int dollars;
int cents;

};
const Money operator +(const Money & value1,

 const Money & value2);
const Money operator -(const Money & value1,

 const Money & value2);
bool operator ==(const Money & value1,

 const Money & value2)
const Money operator -(const Money & value);

Defining the + overload

● Overloading addition of Money:
const Money operator +(const Money & value1,

 const Money & value2){
int allCents1 = value1.getDollars()*100 +

value1.getCents();
int allCents2 = value2.getDollars()*100 +

value2.getCents();
int sumAllCents = allCents1 + allCents2;
int absAllCents = abs(sumAllCents);
int finalDollars = absAllCents/100;
int finalCents = absAllCents % 100;
if(sumAllCents < 0){

finalDollars = -finalDollars;
finalCents = -finalCents;

}
return Money(finalDollars, finalCents);

}

Defining the == and unary -
overloads

● Overloading equivalence/negative of Money:
const Money operator -(const Money & value){

return Money(-value.getDollars(),
 -value.getCents());

}

bool operator ==(const Money & value1,
 const Money & value2){

return ((value1.getDollars() == value2.getDollars()
 && (value1.getCents() == value2.getCents()));

}

Overloading is done!

● It is now possible to use +,-,==, and – with
Money in a program.

● Since they are non-member, we needed
accessor and mutator functions.

● You probably noticed const a lot.
– This is to prevent the Money returned from the

addition from being changed immediately!
– Generally, use const for operator overloading

unless you have a good reason not to.
● Unary operators like ++,-- can also be

overloaded.

Overloading operators as a
member

● Very similar to overloading as a non-
member: you place the prototype within your
class definition, and omit the first argument.
– The first argument is now the calling object.
– Since it is a member function, private variables

can be called directly!
– While it is more efficient and more Object-

Oriented to use member operators, this version
does have drawbacks.

An example of how to do
member operator overloading

●A shortened Money class and overloadings:
class Money{
public:

Money(int newDollars, int newCents);
int getDollars() const;
int getCents() const;
void output() const;
const Money operator +(Money & value2) const;
const Money operator -(Money & value2) const;
bool operator ==(const Money & value2) const;
const Money operator -() const;

private:
int dollars;
int cents;

};

Defining the + overload as a
member

● Overloading addition of Money:
const Money operator +(Money & value2){

int allCents1 = dollars*100 + cents;
int allCents2 = value2.dollars*100 +

value2.cents;
int sumAllCents = allCents1 + allCents2;
int absAllCents = abs(sumAllCents);
int finalDollars = absAllCents/100;
int finalCents = absAllCents % 100;
if(sumAllCents < 0){

finalDollars = -finalDollars;
finalCents = -finalCents;

}
return Money(finalDollars, finalCents);

}

Defining the == and unary –
overloads as members

● Overloading equivalence/negative of Money:
const Money operator -(){

return Money(-dollars, -cents);
}

bool operator ==(const Money & value2){
return ((dollars == value2.dollars)

 && (cents == value2.cents));
}

Defining as Member Operators

● Making the definitions is very similar
– You can now access without accessors.
– The first argument is now just the calling object.
– Remember to add const at the end of the

prototype and definition to make sure the calling
object can't be changed.

– Also remember to add the scope to your
definition now:
bool Money::operator ==(const Money & value2){

return ((dollars == value2.dollars)
 && (cents == value2.cents));

}

Let's work on doing overloading
as a class

● I've deleted the prototypes and definitions
that I wrote for a class called Fraction.

● I'll hand out this blanked version of the code.
● Work in groups of 2 or 3 and try to fill it out

on your own, and we'll see how well we can
get it to work.

● After you finish, think about how you might
change it to use member functions.

Using Constructors for
Automatic Type Conversion

● Recall how we defined Money and its
overloaded operators earlier. How would this
code work?

Money original(100,60), fullAmount;
fullAmount = original + 25;
fullAmount.output();

● This outputs $125.60, but how?
– 25 is not appropriate. We didn't overload + to

take a Money and an int.
– If we have a constructor that converts a single int

into Money, though...

How the system knows what to
do

● Let's say you pass in
original + 25;

● The system starts by looking for an overload
of + that has a Money for argument 1 and an
int for argument 2.

● When it doesn't find that, it will try to make it
fit the only overload we made: Money and
Money.

● So, it uses (if it exists) the single int
constructor to automatically convert the int to
Money!

When doesn't automatic type
conversion work?

● If you don't have an appropriate constructor
defined.

● Keep in mind, this is just like with other overloaded
functions. Remember the matching rules from the
first time we talked about overloading!

● Note: Member operators will behave oddly.
– If you try to do 25 + original;, the non-member will

handle this fine.
– But, member operators MUST have the class type

as the first operand – an int like 25 cannot make a
call!

– This is that previously mentioned pitfall of member
operators.

Friend Functions

● When we previously defined a non-member
overloaded operator, we needed to use
accessors to define it properly.

● While this is sufficient, it is also inefficient
and harder to read.

● How can we eliminate this intermediate step?
(Hint: Look at the slide title!)

● Yes, friend functions!
● A friend function of a class is not a member

function, but has access to private members
of that class.

Using friend functions

● To make a function a friend of a class, you
give its prototype in the class definition with
the keyword friend in front.

● You can then define it normally, but any
objects of that class used in the function can
access the private members of the class.
class Money{
public:

...
friend const Money operator +(const Money &

value 1, const Money & value 2);
...

}
const Money operator +(const Money & value 1,

 const Money & value 2){....}

Friend functions

● Any function can be a friend, but overloaded
operators are most common.

● You can make a function a friend of as many
classes as you like – just put the friend
prototype in each class that applies.

● Depending on who you ask, friend functions
are not “pure” object-oriented functions. They
break the spirit of encapsulation. (Though not
as much as a non-member, non-friend
overload, perhaps.)

● More on the use of friends later.

Compilers without friends

● Some older compilers don't handle friends
properly. Be warned!

Rules for operator overloading
● At least one argument must be of a class type.
● Most operators can be overloaded as a no-

member, a member, or a friend.
● Some operators can only be done as

members: =,[],->,().
● You cannot make new operators.
● You cannot change the number of arguments

an operator takes!
● Precedence does not change.
● .,::,sizeof,?:, and .* cannot be overloaded.
● Overloaded operators have no default

arguments.

Return by Reference
● A reference is the name of a storage location.

int robert;
int& bob = robert;

● This may be familiar from call-by-reference – a
reference is effectively an alias for a variable.

● These references can be returned:
double& sampleFunction(double& var){

return var;
}

● This simple example you let you do this:
double m = 99;
cout << sampleFunction(m) << endl;
sampleFunction(m) = 42;
cout << m << endl;

Return by reference
● The previous example would output 99, then

42.
● Note: never return the reference to a local

variable!
● L-value and R-value:

– L-value is something that can appear on the left
side of an assignment operator.

– R-value is something that can appear on the
right side of an assignment operator.

– In order to use the object returned by a function
as an l-value, it must be returned by reference.

● We will use this return by reference to
overload certain operators.

Overloading << and >>

● You may remember from our discussion of
streams that << and >> return the first
variable when they complete.
– This allows us to string << or >> together:

● cout << x << “ is equal to “ << y;
● So, to overload these, the first parameter is

an appropriate stream type (output for <<,
input for >>) and the second is your class
type.

● ostream& operator <<(ostream& out,
 const Money& value);

Overloading <<

● How might you do this?
ostream& operator <<(ostream& out, const
Money& value){
// As a regular non-member overload

value.print(out);
return out;

}
{ // As a friend function

out << value.variable;
return out;

}

Two schools of thought

● The book recommends overloading << and
>> as friend functions.

● Most professors I have spoken with do not
recommend this.

● Many professors and professionals use
friend rarely if at all!

Against friend functions

● Friend functions have several knocks against
them:
– They violate the security/encapsulation principles

of Object Oriented Programming.
– They tend to become overly complex to program

and use, and lead to bad programming practices.
● Yes, you can use an overloaded +, but you can also

write a member add() function or some other function
that replicates the functionality you need.

– For example, rather than overload <<, make a char*
toString() member function, and send that to the stream.

– They aren't actually needed in most cases!
– Depending on who you ask, even operator

overloading isn't needed.

Overloading
increment/decrement

● To make these work properly, you must
define two overloads:
– One with no argument (for prefix)
– One with a single int argument (for postfix)

● The single int argument is irrelevant – it just
lets the compiler know which version to call.

● This should be a member operator.

Overloading array operator

● You can define your own bracket functionality
so that you can access a class with x[0] if
you like.

● It must be a member operator, and it must
take a single int parameter.

Overloading Assignment
Operators

● We will discuss this later.
● Just know that doing this lets you override

how to do copying and assignment.

Friend classes

● We will not use this. Should you ever see it:
class X;

class Y{
public:...

friend X;...
private:

...
}

class X{...
● This lets objects of class X access private

variables of objects of class Y.

