
Who Am I?

Chris Fischer, B.S.
Software Engineer for Hologic, Inc.

What is C++

A High Level, Compiled, Unmanaged,
Third-Generation Programming
Language.
What’s in the name?

Where did it come from?

Created by Bjarne Stroustrup at AT&T
in the 1970’s
In the world of industrial software, C++
is viewed as a solid, mature,
mainstream tool. It has widespread
industry support which makes it "good"
from an overall business perspective.

Compiled

Compiled (versus Interpreted).
Interpreters validate and run a program one line at a time. The
program will run until a syntax error is encountered or until the
program terminates.
Tend to be slower
User has access to source code
Good for developing prototype systems
Usually designed for simpler languages such as BASIC, Visual
Basic, Dbase, SQL

Compiled
Compilers are different.

Check syntax for errors
When ALL syntax errors are corrected (through many "go-
'rounds" correcting and recompiling), a object file (*.o,
sometimes seen as *.obj) is generated
Object files must be linked
Create an executable file (in our case a.out, but sometimes
*.exe)
Once the compile process is complete the executable file can be
run
Much faster
User does not usually have access to the source code

Unmanaged

C++ is Unmanaged
(unlike Java and C#).
You have direct control of what
happens in memory, which can be very
powerful, but very error prone.
Java and C#, which both have roots in
C#, does not allow this (why?)

Third Generation Language

First Generation: Machine code
(0’s and 1’s)
Second Generation: Assembly
Third Generation: C, C++, Java, C#
Fourth Generation:
SQL, macro languages, MATLAB

Other C++’s
There are many different
implementations of C++
They’re all slightly different, because
C++ is (basically) platform specific.
A C++ program compiled on machine A
probably won’t run on Machine B.

Compilers and File Extensions

Use .cc for C++ source files
.C, .cpp, cxx also used.
Two compilers (maybe more?)
available on strauss

CC – Sun WS C++ Compiler
g++ - GNU C++ Compiler

a.out

Produces a file called a.out, you run it
by typing “a.out”.
To produce a different filename, use
the –o option

CC –o temp.out temp.cc

Getting there..
There are 6 basic “steps” in creating a C++
program.

1) Editing
2) Preprocessing
3) Compiling
4) Linking
5) Loading
6) Executing

What is compiling?

Actually 3 steps
Preprocessing
Compiling
Linking

Hello World
Every programmer new to a language should run a Hello, World
program. This is a program that just prints “Hello, World” and
exits. Here’s the one for C++

// Hello World Program for C++
// Author: Chris Fischer Date: 9-3-03
#include <iostream>

int main(void)
{

std::cout <<“Welcome to C++!\n”;
return 0; //indicates successful termination

}

iostream or iostream.h
Both are C++ classes/libraries for input and
output operation.
What is a library anyways (code reuse)?
Which one of these should I #include?
Why?
What is #include?
What does the # sign represent?
What is a using statement?
Where do I put them?

A more detailed example
#include <iostream>
using namespace std;
int main(void)
{

int a,b;
std::cin >> a >> b;
std::cout <<“You entered “<< a << “ and “ << b << std::endl;
cout <<“Thank you.”;

return 0;
}

Variables and basic
assignments

What is a variable?

int a;
int b=0;
a=3;
int c;
cout << c;
float b=1.44;

Arithmetic operators
addition ‘+’
subtraction ‘-’
multiplication ‘*’
division ‘/’
modulus (remainder of division) ‘%’

Precedence and Associativity

1: () All left to right
2: *, /, % except for =
3: +, -
4: <<, >>
5: <, <=, >, >=
6: ==, !=
7: =

Assignment and Equality
Operators

What is the value of the following code?

int a=0;

if (a = 0)
cout <<“Equal!”;

else
cout <<“Not Equal!”;

Assignment and Equality
Operators

== and = are very often mistakenly exchange
for one another.
While not foolproof, one good way to minimize
this is, whenever you compare a variable to a
constant, instead of writing

if (a == 7) instead do if (7 == a)

Why do we do this?

Numbers
Integers
Internal representations of integers is a simple function of
powers of 2. Since the computer only understands a 1 or 0,
all values must be converted to base 2 in order to be stored in a
computer.
For Example, the number 107 stored in binary would look like:

The value is calculated by selecting, or not selecting values
associated with a power of 2. So, 107 is represented as:
107 = 64 + 32 + 8 + 2 + 1
When storing integers, larger numbers are possible by simply
using more bits (2 or 4 byte integers).

1248163264128
11010110
2021222324252627

Numbers
Real Numbers
Real numbers are more complicated to represent than
integers because you have to deal with 4 distinct
components.
Thus, when we store data using float or double as the
data type, the internal representation becomes more
complicated than an integer datatype. In order to make
sense of it, we are going to have to review a bit about
what we know about real numbers in the decimal system.
A real number can be expressed as -123.456, for example.
Some scientific calculators would use the format
-1.23456 * 10 2.

Computers typically use something closer to the second
form.

Numbers
In Decimal, we would say that -1.23456 * 10 2

consists of the following components:
1. the sign (-)
2. the Radix is 10 (base 10)
3. the Exponent is 2
4. the Mantissa is 1.23456

When representing real numbers, the component parts are:
1. Sign bit indicating whether number is positive or negative.
2. The base or radix for exponentiation - this is almost always 2
3. The exponent to which the base is raised (sometimes this is

offset by a fixed number called a bias)
4. The mantissa or significand,

an unsigned integer representing the number

Numbers
A float in C++ is typically: composed of 32 bits

(4 bytes) comprised of:
1. A sign bit.
2. 8 bit exponent (bias of 127)
3. 23 bit mantissa
A double in C++ is typically: composed of 64

bits (8 bytes) comprised of:
1. A sign bit.
2. 11 bit exponent (bias of 1023)
3. 52 bit mantissa

Floats

Floating Point is wildly inaccurate. Look
at this example.

float a=1000.43
float b=1000.0;
cout << a – b << endl;

This outputs .0429993

Chars
Characters
A character representation is stored in a single byte.
A computer's natural language is a bit pattern.
It is humans that require symbols to read.
A byte can store 256 different bit patterns and application
developers use standard representations to determine what
symbol (character) the individual bit patterns represent.
A number of standards have been used to represent
character data. As typically happens when people are
working separately on separate products they often choose
different values to represent a common symbol. For
example, the "a" is stored on IBM mainframes using the
EBCDIC standard as 1000 0001 (81 Hex, or 129 Dec) and
another standard, ASCII uses 0110 0001 (61 Hex, or 97
Dec).

Chars
In order for computers to exchange text data, there had to

be a standard for communication that said "everybody
shall use this bit pattern as an "a". One of the first and
most successful of these standards was a table
called American Standard Code for Information
Interchange or ASCII for short. It defined only 128
characters of the possible 256 combinations in one byte
and left the remaining 128 up in the air. It did not include
non-english characters like ç.

There are some ASCII extensions which define the other 128
characters, but they are not necessarily standard.

Coding Standards
This is just how we, as humans, format our computer
code.
The computer does not care at all about this. How you
format your code will not (directly) affect how your
programs runs, at all.
However, programming (in practice) is a team sports.
Coding conventions can help the team work together
better.
So why are these important? Why might it be bad?

The Good
Common standards a few good things happen:

Programmers can go into any code and figure out
what's going on.
New people can get up to speed quickly.
People new to C++ are spared the need to develop a
personal style and defend it to the death.
People new to C++ are spared making the same
mistakes over and over again.
People tend to make fewer mistakes in consistent
environments.

The Bad
You’ll hear lots of reasons why coding standards are

bad / pointless. Some of the reasons are even
almost valid. You may hear
The standard is usually stupid because it was made
by someone who doesn't understand C++.
The standard is usually stupid because it's not what I
do.
Standards reduce creativity.
Standards are unnecessary as long as people are
consistent.
Standards enforce too much structure.
People ignore standards anyway.

The Ugly?
We’re going to make up a coding standard for our
class. Everyone in our class will use it. It’ll be
posted on the website.
It’s going to be fairly simple (read: incomplete).
The whole point of this is to get you thinking about
structuring/commenting your programs – not to
rigidly enforce it.

So here it is
1) Each Source File should have a comment block at the top, with

your name, the date, the program filename, and a short
description in it (also, for Prof. Conrad, your section number)

2) Variables names should be self describing, exceptions being loop
counters in for loops, etc.

int myWeightInPounds; int timeoutInMsec;
3) Function names should also be self describing

checkForErrors() instead of errorCheck(), dumpDataToFile()
instead of dataFile().

4) Use consistent case. camelCaseIsFine
5) Indentation – always exactly 3 spaces, not tabs.

(Or, use the automatic indentation that your editor gives you)
6) No magic numbers – any number other than 0 or 1 should have

a constant defined for it. Example:
const int squareFeetInSquareYard = 9;

So here it is
7) Use spaces in all assignment statements, and always use

brackets in control / repetition statements

for (int i = 0; i < someConstant; i++)
{

//do something
}

if (a == b)
{

//do something
}

8) Use meaningful comments to describe complex situations.
Avoid useless comments.

Decision Statements
If-Else – simplest decision structure
if (some condition is true)
{

//do something
}
else
{

//do something else
}

Decision Statements
The conditional in a C++ if can evaluate to 2 different things – a
boolean or an int

if (someNumber > someOtherNumber)

will evaluate to a boolean (either true or false)

if statements can also evaluate to an int – the following is valid
in C++

if (1) { cout <<“yes!”; }

With integers, 0 evaluates to false, and any other number
evaluates to true

If/Else

Simple Example

if (result == answer)
cout << "You are correct" << endl;

else {
cout << "Sorry, you’re wrong."
cout << "Try again." << endl;

}

Nested Example
if (somenumber==1)

//do something
else if (somenumber==2)

//do something else
else if (somenumber==3)

//do something else
else

//do nothing

Comparison Operators

Equal to ==
Not equal to !=
Greater than >
Less than <
Greater than or equal >=
Less than or equal <=

Boolean Operators

Not Operator !
Or Operator ||
AND Operator &&

Decision Statements in C++
Couple of C++ pitfalls to watch out for.
First, what is a pitfall?
C++ code that

compiles
links
runs
then does something different than you expect

if statements
Normally, our decision statements test truth
if (a > 6) { do something }

a > 6 will evaluate to boolean true / false
C++ will also accept an int instead of a boolean. With
this, 0 is false, everything else is true

if (1) cout <<“true” // will cout “true”
So, one C++ pitfall are statements like this

if (-0.5 <= x <= 0.5) return 0;

This expression does not test the mathematical condition
-0.5 <= x <= 0.5

Instead, it first computes -0.5 <= x, which is 0 or 1, and then
compares the result with 0.5.

Ternary Operator

<condition> ? true result : false result

cout << (grade >= 60 ? “Passed” : “Failed”);

Examples
cout << (outsidetemp<32&&issnowing==true?“No Class!”:”We
have class”);

Examples
const int freezing_point=32;
if ((outside_temp < freezing_point) && (is_snowing == true))

cout <<“No Class!”;
else

cout <<“We have class”;

Examples
cout << (outsidetemp<32&&issnowing==true?“No Class!”:”We have
class”);

if (outsidetemp<32&&issnowing==true)
cout <<“No Class!”;

else
cout <<“We have class”;

const int freezing_point=32;
if ((outside_temp < freezing_point) && (is_snowing == true))

cout <<“No Class!”;
else

cout <<“We have class”;

More Examples
const int freezing_point=32;
if (

((outside_temp < freezing_point) && (is_snowing == true)) ||
(raining_fire == true))

cout <<“No Class!”;
else

cout <<“We have class”;

const int freezing_point=32;
if (

((outside_temp < freezing_point) && (is_snowing == true)) ||
(!raining_fire == false))

cout <<“No Class!”;
else

cout <<“We have class”;

Switch Statement
switch (grade)
{

case ‘A’:
case ‘a’:

cout <<“A work!”;
break;
case ‘B’:
case ‘b’:

cout <<“B work..”;
break;
case ‘C’:
case ‘c’:

cout <<“C work….”;
break;
default:

cout <<“Grade less than C”;
break; //optional – will exit anyhow

}

